3 research outputs found

    Spatio-temporal estimation of wind speed and wind power using extreme learning machines: predictions, uncertainty and technical potential

    Get PDF
    With wind power providing an increasing amount of electricity worldwide, the quantification of its spatio-temporal variations and the related uncertainty is crucial for energy planners and policy-makers. Here, we propose a methodological framework which (1) uses machine learning to reconstruct a spatio-temporal field of wind speed on a regular grid from spatially irregularly distributed measurements and (2) transforms the wind speed to wind power estimates. Estimates of both model and prediction uncertainties, and of their propagation after transforming wind speed to power, are provided without any assumptions on data distributions. The methodology is applied to study hourly wind power potential on a grid of 250Ă—250 m2 for turbines of 100 m hub height in Switzerland, generating the first dataset of its type for the country. We show that the average annual power generation per turbine is 4.4 GWh. Results suggest that around 12,000 wind turbines could be installed on all 19,617 km2 of available area in Switzerland resulting in a maximum technical wind potential of 53 TWh. To achieve the Swiss expansion goals of wind power for 2050, around 1000 turbines would be sufficient, corresponding to only 8% of the maximum estimated potential

    Chemical Biology and Biomedicine

    No full text

    Transplastomic plants for innovations in agriculture. A review

    No full text
    corecore