750 research outputs found

    Radiative Production of Non-thermal Dark Matter

    Full text link
    We compare dark matter production from the thermal bath in the early universe with its direct production through the decay of the inflaton. We show that even if dark matter does not possess a direct coupling with the inflaton, Standard Model loop processes may be sufficient to generate the correct relic abundance.Comment: 12 pages, 8 figure

    Event anisotropy of identified π0\pi^{0}, photon and electron compared to charged π\pi, KK, pp and deuteron in sNN\sqrt{s_{NN}} = 200 GeV Au+Au at PHENIX

    Full text link
    We report the recent results of event anisotropy analysis focused on v2v_2 in sNN\sqrt{s_{NN}} = 200 GeV Au+Au collisions at PHENIX.Comment: 4 pages, 3 figures, contribution to the proceedings of the 17th International Conference on Ultra-Relativistic Nucleus-Nucleus Collisions (Quark Matter, Oakland, January 11-17, 2004). To appear in the proceedings (Journal of Physics G

    Quantifying Limits on CP Violating Phases from EDMs in Supersymmetry

    Full text link
    We revisit the calculation of the electron, neutron, and proton electric dipole moments (EDMs) in the constrained minimal supersymmetric standard model (CMSSM). The relatively large mass of the Higgs boson, mH125m_H \simeq 125 GeV coupled with the (as yet) lack of discovery of any supersymmetric particle at the LHC, has pushed the supersymmetry breaking scale to several TeV or higher. Though one might expect this decoupling to have relaxed completely any bounds on the two CP violating phases in the CMSSM (θμ\theta_\mu and θA\theta_A), the impressive experimental improvements in the limits on the EDMs (particularly the electron EDM) still allow us to set constraints of order (0.010.1)π(0.01 - 0.1)\pi on θA\theta_A and (0.0010.1)π(0.001 - 0.1)\pi on θμ\theta_\mu. We also discuss the impact of future improvements in the experimental limits on supersymmetric models.Comment: 34 pages, 8 figure

    Centrality Dependence of Thermal Parameters Deduced from Hadron Multiplicities in Au + Au Collisions at sqrt{s_{NN}} = 130 GeV

    Full text link
    We analyse the centrality dependence of thermal parameters deduced from hadron m ultiplicities in Au + Au collisions at sNN=130GeV\sqrt{s_{NN}} = 130 GeV. While the chemical freeze-out temperature and chemical potentials are found to be roughly centrality-independent, the strangeness saturation factor γS\gamma_S increases with participant number towards unity, supporting the assumption of equilibrium freeze-out conditions in central collisions

    The Role of Vectors in Reheating

    Full text link
    We explore various aspects concerning the role of vector bosons during the reheating process. Generally, reheating occurs during the period of oscillations of the inflaton condensate and the evolution of the radiation bath depends on the inflaton equation of state. For oscillations about a quadratic minimum, the equation of state parameter, w=p/ρ=0w = p/\rho =0, and the evolution of the temperature, T(a)T(a) with respect to the scale factor is independent of the spin of the inflaton decay products. However, for cases when w>0w>0, there is a dependence on the spin, and here we consider the evolution when the inflaton decays or scatters to vector bosons. We also investigate the gravitational production of vector bosons as potential dark matter candidates. Gravitational production predominantly occurs through the longitudinal mode. We compare these results to the gravitational production of scalars.Comment: 37 pages, 9 Figure

    A Start-Timing Detector for the Collider Experiment PHENIX at RHIC-BNL

    Full text link
    We describe a start-timing detector for the PHENIX experiment at the relativistic heavy-ion collider RHIC. The role of the detector is to detect a nuclear collision, provide precise time information with an accuracy of 50ps, and determine the collision point along the beam direction with a resolution of a few cm. Technical challenges are that the detector must be operational in a wide particle-multiplicity range in a high radiation environment and a strong magnetic field. We present the performance of the prototype and discuss the final design of the detector.Comment: 12 pages, LaTeX, 9 gif and 4 ps figures. Submitted to NIM

    Change of Electronic Structure Induced by Magnetic Transitions in CeBi

    Full text link
    The temperature dependence of the electronic structure of CeBi arising from two types of antiferromagnetic transitions based on optical conductivity (σ(ω)\sigma(\omega)) was observed. The σ(ω)\sigma(\omega) spectrum continuously and discontinuously changes at 25 and 11 K, respectively. Between these temperatures, two peaks in the spectrum rapidly shift to the opposite energy sides as the temperature changes. Through a comparison with the band calculation as well as with the theoretical σ(ω)\sigma(\omega) spectrum, this peak shift was explained by the energy shift of the Bi 6p6p band due to the mixing effect between the Ce 4fΓ84f \Gamma_8 and Bi 6p6p states. The single-layer antiferromagnetic (++-) transition from the paramagnetic state was concluded to be of the second order. The marked changes in the σ(ω)\sigma(\omega) spectrum at 11 K, however, indicated the change in the electronic structure was due to a first-order-like magnetic transition from a single-layer to a double-layer (++++--) antiferromagnetic phase.Comment: 4 pages, to be published in J. Phys. Soc. Jpn. 73 Aug. (2004

    Geometry and quantum delocalization of interstitial oxygen in silicon

    Full text link
    The problem of the geometry of interstitial oxygen in silicon is settled by proper consideration of the quantum delocalization of the oxygen atom around the bond-center position. The calculated infrared absorption spectrum accounts for the 517 and 1136 cm1^{-1} bands in their position, character, and isotope shifts. The asymmetric lineshape of the 517 cm1^{-1} peak is also well reproduced. A new, non-infrared-active, symmetric-stretching mode is found at 596 cm1^{-1}. First-principles calculations are presented supporting the nontrivial quantum delocalization of the oxygen atom.Comment: uuencoded, compressed postscript file for the whole. 4 pages (figures included), accepted in PR
    corecore