115 research outputs found
A Discrimination Method for Landmines and Metal Fragments Using Metal Detectors
While discrimination methods for distinguishing between real mines and metal fragments would greatly increase the efficiency of demining operations, no practical solution has been implemented yet. A potentially efficient method for the discrimination of metallic targets using metal detectors uses a high-precision robotic manipulator to scan the minefield. Further field research is needed, however, before this method can deploy for operational use
Early Detection of Adverse Drug Reaction Signals by Association Rule Mining Using Large-Scale Administrative Claims Data
INTRODUCTION: Adverse drug reactions (ADRs) are a leading cause of mortality worldwide and should be detected promptly to reduce health risks to patients. A data-mining approach using large-scale medical records might be a useful method for the early detection of ADRs. Many studies have analyzed medical records to detect ADRs; however, most of them have focused on a narrow range of ADRs, limiting their usefulness. OBJECTIVE: This study aimed to identify methods for the early detection of a wide range of ADR signals. METHODS: First, to evaluate the performance in signal detection of ADRs by data-mining, we attempted to create a gold standard based on clinical evidence. Second, association rule mining (ARM) was applied to patient symptoms and medications registered in claims data, followed by evaluating ADR signal detection performance. RESULTS: We created a new gold standard consisting of 92 positive and 88 negative controls. In the assessment of ARM using claims data, the areas under the receiver-operating characteristic curve and the precision-recall curve were 0.80 and 0.83, respectively. If the detection criteria were defined as lift > 1, conviction > 1, and p-value < 0.05, ARM could identify 156 signals, of which 90 were true positive controls (sensitivity: 0.98, specificity: 0.25). Evaluation of the capability of ARM with short periods of data revealed that ARM could detect a greater number of positive controls than the conventional analysis method. CONCLUSIONS: ARM of claims data may be effective in the early detection of a wide range of ADR signals
Characterization of TRPA channels in the starfish Patiria pectinifera: involvement of thermally activated TRPA1 in thermotaxis in marine planktonic larvae.
The vast majority of marine invertebrates spend their larval period as pelagic plankton and are exposed to various environmental cues. Here we investigated the thermotaxis behaviors of the bipinnaria larvae of the starfish, Patiria pectinifera, in association with TRPA ion channels that serve as thermal receptors in various animal species. Using a newly developed thermotaxis assay system, we observed that P. pectinifera larvae displayed positive thermotaxis toward high temperatures, including toward temperatures high enough to cause death. In parallel, we identified two TRPA genes, termed PpTRPA1 and PpTRPA basal, from this species. We examined the phylogenetic position, spatial expression, and channel properties of each PpTRPA. Our results revealed the following: (1) The two genes diverged early in animal evolution; (2) PpTRPA1 and PpTRPA basal are expressed in the ciliary band and posterior digestive tract of the larval body, respectively; and (3) PpTRPA1 is activated by heat stimulation as well as by known TRPA1 agonists. Moreover, knockdown and rescue experiments demonstrated that PpTRPA1 is involved in positive thermotaxis in P. pectinifera larvae. This is the first report to reveal that TRPA1 channels regulate the behavioral response of a marine invertebrate to temperature changes during its planktonic larval period
Recommended from our members
Identification of CD133+ intercellsomes in intercellular communication to offset intracellular signal deficit
CD133 (prominin 1) is widely viewed as a cancer stem cell marker in association with drug resistance and cancer recurrence. Herein, we report that with impaired RTK-Shp2-Ras-Erk signaling, heterogenous hepatocytes form clusters that manage to divide during mouse liver regeneration. These hepatocytes are characterized by upregulated CD133 while negative for other progenitor cell markers. Pharmaceutical inhibition of proliferative signaling also induced CD133 expression in various cancer cell types from multiple animal species, suggesting an inherent and common mechanism of stress response. Super-resolution and electron microscopy localize CD133 on intracellular vesicles that apparently migrate between cells, which we name 'intercellsome.' Isolated CD133+ intercellsomes are enriched with mRNAs rather than miRNAs. Single-cell RNA sequencing reveals lower intracellular diversity (entropy) of mitogenic mRNAs in Shp2-deficient cells, which may be remedied by intercellular mRNA exchanges between CD133+ cells. CD133-deficient cells are more sensitive to proliferative signal inhibition in livers and intestinal organoids. These data suggest a mechanism of intercellular communication to compensate for intracellular signal deficit in various cell types
Recommended from our members
A tumorigenic index for quantitative analysis of liver cancer initiation and progression.
Primary liver cancer develops from multifactorial etiologies, resulting in extensive genomic heterogeneity. To probe the common mechanism of hepatocarcinogenesis, we interrogated temporal gene expression profiles in a group of mouse models with hepatic steatosis, fibrosis, inflammation, and, consequently, tumorigenesis. Instead of anticipated progressive changes, we observed a sudden molecular switch at a critical precancer stage, by developing analytical platform that focuses on transcription factor (TF) clusters. Coarse-grained network modeling demonstrated that an abrupt transcriptomic transition occurred once changes were accumulated to reach a threshold. Based on the experimental and bioinformatic data analyses as well as mathematical modeling, we derived a tumorigenic index (TI) to quantify tumorigenic signal strengths. The TI is powerful in predicting the disease status of patients with metabolic disorders and also the tumor stages and prognosis of liver cancer patients with diverse backgrounds. This work establishes a quantitative tool for triage of liver cancer patients and also for cancer risk assessment of chronic liver disease patients
Structure and health status of the sand crab, Emerita taiwanesis Hsueh, 2015 from Sangchan Beach, Thailand: The histopathological approach
Although the impacts of environmental problems on aquatic organisms have been broadly reported in Thailand, the literature has not covered the sand crab, Emerita taiwanesis Hsueh, 2015. In this study, we focused on the structure and health status of E. taiwanesis, an economically important crab species, living close to human activity areas in Sangchan Beach, Rayong Province, Thailand. A total of 60 individuals were collected from the conservation and restoration of coastal resource project in Ban Rue Leg Kao Yod-based participatory during December 2016 – January 2017. We identified histopathological changes in the gill structure, but not in other vital organs, including ganglion, stomach, intestine, hepatopancreas and muscular bundles. The histological alterations in the gill include hematocyte infiltration, pyknotic nuclei and degeneration of pillar cells in the gill (50% prevalence), suggesting that the gill is a sensitive organ to environmental changes. Our observation provided a better understanding of E. taiwanesis morphology and its overall healthy state on Sangchan Beach. Additionally, we suggest that the sand crab would be a suitable sentinel species for monitoring the environment of coastal areas in Thailand.
Unburned Carbon Behavior in Sintered Coal Fly-Ash Bulk Material by Spark Plasma Sintering
Coal fly-ash bulk materials were prepared by spark plasma sintering (SPS). The as-received coal fly ash produced by Misumi Power Station (The Chugoku Electric Power Co., Inc.), had an average particle size of 19 mm and contained about 2% carbon from unburned coal. The sintering temperature was 1000 C for 10 min. The mass density of the sintered compact was 2:4 Â 10 3 kg/m 3 . After three-point flexural testing of the compact, the average flexural strength and Young's modulus were 25.6 MPa and 23.0 GPa, respectively. From the flexural strength, the Weibull modulus was found to be m ¼ 6:13, indicating that the compact was a typical ceramics. Fractographic examination indicated that in all specimens the fracture origin was located on the bottom surface and was not an intrinsic flaw. Vickers indentation test showed that the fracture toughness was 0.61 MPaÁm 0:5 and the calculated critical flaw size, c 0 , was 0.18 mm. This c 0 value was larger than that of the voids and unburned carbon on the fracture surface. It is noteworthy that the mechanical strength of the sintered compact was not affected by the voids and unburned carbon
In Silico Study of Rett Syndrome Treatment-Related Genes, MECP2, CDKL5, and FOXG1, by Evolutionary Classification and Disordered Region Assessment
Rett syndrome (RTT), a neurodevelopmental disorder, is mainly caused by mutations in methyl CpG-binding protein 2 (MECP2), which has multiple functions such as binding to methylated DNA or interacting with a transcriptional co-repressor complex. It has been established that alterations in cyclin-dependent kinase-like 5 (CDKL5) or forkhead box protein G1 (FOXG1) correspond to distinct neurodevelopmental disorders, given that a series of studies have indicated that RTT is also caused by alterations in either one of these genes. We investigated the evolution and molecular features of MeCP2, CDKL5, and FOXG1 and their binding partners using phylogenetic profiling to gain a better understanding of their similarities. We also predicted the structural order–disorder propensity and assessed the evolutionary rates per site of MeCP2, CDKL5, and FOXG1 to investigate the relationships between disordered structure and other related properties with RTT. Here, we provide insight to the structural characteristics, evolution and interaction landscapes of those three proteins. We also uncovered the disordered structure properties and evolution of those proteins which may provide valuable information for the development of therapeutic strategies of RTT
Cognitive function among hemodialysis patients in Japan
<p>Abstract</p> <p>Background</p> <p>Over 290,000 patients are undergoing hemodialysis (HD) in Japan. With old age, the odds of undergoing HD treatment sharply increase, as does the prevalence of cognitive impairment. The aim of the present work was to assess cognitive impairment in HD patients and its relation to clinical characteristics.</p> <p>Methods</p> <p>Using a cross-sectional design, we administered the Mini-Mental State Examination (MMSE) to 154 HD outpatients and 852 participants from the Iwaki Health Promotion Project 2010, representing the general population.</p> <p>Results</p> <p>The prevalence of cognitive impairment based on the MMSE was 18.8% in HD patients. HD patients showed a higher prevalence of cognitive impairment in older groups (50 years and older). In a logistic regression model with age, gender and amount of education as covariates, undergoing HD was a significant independent factor (OR = 2.28, 95% CI 1.33 to 3.94) associated with a lower MMSE score. Among HD patients, we found that level of education was associated with MMSE score.</p> <p>Conclusions</p> <p>There is a high prevalence of cognitive impairment among HD patients that has adverse implications for hospitalization and shortens their life expectancy. HD treatment was an independent risk factor for cognitive impairment. Clinicians should carefully monitor and treat cognitive impairment in HD patients. Further studies are required to determine the reasons for cognitive impairment in HD patients.</p
Gel-seq: Whole-Genome and Transcriptome Sequencing by Simultaneous Low-Input DNA and RNA Library Preparation Using Semi-Permeable Hydrogel Barriers
The advent of next generation sequencing has fundamentally changed genomics research. Unfortunately, standard protocols for sequencing the genome and the transcriptome are incompatible. This forces researchers to choose between examining either the DNA or the RNA for a particular sample. Here we describe a new device and method, collectively dubbed Gel-seq, that enables researchers to simultaneously sequence both DNA and RNA from the same sample. This technology makes it possible to directly examine the ways that changes in the genome impact the transcriptome in as few as 100 cells. The heart of the Gel-seq protocol is the physical separation of DNA from RNA. This separation is achieved electrophoretically using a newly designed device that contains several different polyacrylamide membranes. Here we report on the development and validation of this device. We present both the manufacturing protocol for the device and the biological protocol for preparing genetic libraries. Using cell lines with uniform expression (PC3 and Hela), we show that the libraries generated with Gel-seq are similar to those developed using standard methods for either RNA or DNA. Furthermore, we demonstrate the power of Gel-seq by generating a matched genome and transcriptome library from a sample of 100 cells collected from a mouse liver tumor
- …