80 research outputs found
On the mean field dynamo with Hall effect
We study in the present paper how Hall effect modifies the quenching process
of the electromotive force (e.m.f.) in Mean Field Dynamo (MFD) theories. We
write down the evolution equations for the e.m.f. and for the large and small
scale magnetic helicity, treat Hall effect as a perturbation and integrate the
resulting equations assuming boundary conditions such that the total
divergencies vanish. For force-free large scale magnetic fields, Hall effect
acts by coupling the small scale velocity and magnetic fields. For the range of
parameters considered, the overall effect is a stronger quenching of the e.m.f.
than in standard MHD and a damping of the inverse cascade of magnetic helicity.
In astrophysical environments characterized by the parameters considered here,
Hall effect would produce an earlier quenching of the e.m.f. and consequently a
weaker large scale magnetic field.Comment: 8 pages, 4 figures. Accepted by A&
On the thickness of a mildly relativistic collisional shock wave
We consider an imperfect relativistic fluid which develops a shock wave and
discuss its structure and thickness, taking into account the effects of
viscosity and heat conduction in the form of sound absorption. The junction
conditions and the non linear equations describing the evolution of the shock
are derived with the corresponding Newtonian limit discussed in detail. As
happens in the non relativistic regime, the thickness is inversely proportional
to the discontinuity in the pressure, but new terms of purely relativistic
origin are present. Particularizing for a polytropic gas, it is found that the
pure viscous relativistic shock is thicker than its nonrelativistic
counterpart, while the opposite holds for pure heat conduction.Comment: 11 pages, no figures, title changed, improved introduction and
discussion. New author adde
Seminal magnetic fields from Inflato-electromagnetic Inflation
We extend some previous attempts to explain the origin and evolution of
primordial magnetic fields during inflation induced from a 5D vacuum. We show
that the usual quantum fluctuations of a generalized 5D electromagnetic field
cannot provide us with the desired magnetic seeds. We show that special fields
without propagation on the extra non-compact dimension are needed to arrive to
appreciable magnetic strengths. We also identify a new magnetic tensor field
in this kind of extra dimensional theories. Our results are in very
good agreement with observational requirements, in particular from TeV Blazars
and CMB radiation limits we obtain that primordial cosmological magnetic fields
should be close scale invariance.Comment: Improved version. arXiv admin note: text overlap with arXiv:1007.3891
by other author
Large-scale magnetic fields from inflation in dilaton electromagnetism
The generation of large-scale magnetic fields is studied in dilaton
electromagnetism in inflationary cosmology, taking into account the dilaton's
evolution throughout inflation and reheating until it is stabilized with
possible entropy production. It is shown that large-scale magnetic fields with
observationally interesting strength at the present time could be generated if
the conformal invariance of the Maxwell theory is broken through the coupling
between the dilaton and electromagnetic fields in such a way that the resultant
quantum fluctuations in the magnetic field has a nearly scale-invariant
spectrum. If this condition is met, the amplitude of the generated magnetic
field could be sufficiently large even in the case huge amount of entropy is
produced with the dilution factor as the dilaton decays.Comment: 28 pages, 5 figures, the version accepted for publication in Phys.
Rev. D; some references are adde
The Search for a Primordial Magnetic Field
Magnetic fields appear wherever plasma and currents can be found. As such,
they thread through all scales in Nature. It is natural, therefore, to suppose
that magnetic fields might have been formed within the high temperature
environments of the big bang. Such a primordial magnetic field (PMF) would be
expected to arise from and/or influence a variety of cosmological phenomena
such as inflation, cosmic phase transitions, big bang nucleosynthesis, the
cosmic microwave background (CMB) temperature and polarization anisotropies,
the cosmic gravity wave background, and the formation of large-scale structure.
In this review, we summarize the development of theoretical models for
analyzing the observational consequences of a PMF. We also summarize the
current state of the art in the search for observational evidence of a PMF. In
particular we review the framework needed to calculate the effects of a PMF
power spectrum on the CMB and the development of large scale structure. We
summarize the current constraints on the PMF amplitude and the
power spectral index and discuss prospects for better determining these
quantities in the near future.Comment: 40 pages, 13 figures, Accepted for Physics Reports 23 Feb 2012.
Available online 3 March 2012. In press, corrected proo
Superadiabatic-type magnetic amplification in conventional cosmology
We consider the evolution of cosmological magnetic fields in FRW models and
outline a geometrical mechanism for their superadiabatic amplification on large
scales. The mechanism operates within standard electromagnetic theory and
applies to FRW universes with open spatial sections. We discuss the general
relativistic nature of the effect and show how it modifies the adiabatic
magnetic evolution. Assuming a universe that is only marginally open today, we
estimate the main features of the superadiabatically amplified residual field.Comment: Minor changes. Published versio
Supersymmetry Breaking through Transparent Extra Dimensions
We propose a new framework for mediating supersymmetry breaking through an
extra dimension. It predicts positive scalar masses and solves the
supersymmetric flavor problem. Supersymmetry breaks on a ``source'' brane that
is spatially separated from a parallel brane on which the standard model matter
fields and their superpartners live. The gauge and gaugino fields propagate in
the bulk, the latter receiving a supersymmetry breaking mass from direct
couplings to the source brane. Scalar masses are suppressed at the high scale
but are generated via the renormalization group. We briefly discuss the
spectrum and collider signals for a range of compactification scales.Comment: 20 page
Ohm's Law for Plasma in General Relativity and Cowling's Theorem
The general-relativistic Ohm's law for a two-component plasma which includes
the gravitomagnetic force terms even in the case of quasi-neutrality has been
derived. The equations that describe the electromagnetic processes in a plasma
surrounding a neutron star are obtained by using the general relativistic form
of Maxwell equations in a geometry of slow rotating gravitational object. In
addition to the general-relativistic effect first discussed by Khanna \&
Camenzind (1996) we predict a mechanism of the generation of azimuthal current
under the general relativistic effect of dragging of inertial frames on radial
current in a plasma around neutron star. The azimuthal current being
proportional to the angular velocity of the dragging of inertial
frames can give valuable contribution on the evolution of the stellar magnetic
field if exceeds (
is the number density of the charged particles, is the conductivity of
plasma). Thus in general relativity a rotating neutron star, embedded in
plasma, can in principle generate axial-symmetric magnetic fields even in
axisymmetry. However, classical Cowling's antidynamo theorem, according to
which a stationary axial-symmetric magnetic field can not be sustained against
ohmic diffusion, has to be hold in the general-relativistic case for the
typical plasma being responsible for the rotating neutron star.Comment: Accepted for publication in Astrophysics & Space Scienc
Primordial magnetic fields from inflation?
The hot plasma above the electroweak scale contains (hyper) charged scalar
particles which are coupled to Abelian gauge fields. Scalars may interact with
gravity in a non-conformally invariant way and thus their fluctuations can be
amplified during inflation. These fluctuations lead to creation of electric
currents and produce inhomogeneous distribution of charge density, resulting in
the generation of cosmological magnetic fields. We address the question whether
these fields can be coherent at large scales so that they may seed the galactic
magnetic fields. Depending upon the mass of the charged scalar and upon various
cosmological (critical fraction of energy density in matter, Hubble constant)
and particle physics parameters we found that the magnetic fields generated in
this way are much larger than vacuum fluctuations. However, their amplitude on
cosmological distances is found to be too small for seeding the galactic
magnetic fields.Comment: 32 pages in RevTex styl
- …