3 research outputs found

    Structure-function relationships of wheat flavone O-methyltransferase: Homology modeling, site directed mutagenesis and regulation

    Get PDF
    Wheat (Triticum aestivum) O-methyltransferase (TaOMT2) catalyzes the sequential methylation of the flavone,tricetin (5,7,3',4',5'-pentahydroxyflavone) to its 3'-methyl-(selgin), 3',5'-dimethyl-(tricin) and 3',4',5'-trimethyl ether derivatives, although tricin is the major product of this reaction. The novelty of TaOMT2 to perform three sequential methylations of tricetin as a substrate, the chemopreventive properties of its major product, tricin, and the compelling interest in the protein’s structure-function relationships, prompted us to further investigate this novel protein at the biochemical, molecular and structural levels. A 3-D model of this protein was constructed using the crystal structure of the highly homologous Medicago sativa caffeic acid/5-hydroxyferulic acid O-methyltransferase (MsCOMT) as a template with the aim of proposing a mechanism for multiple methyl transfer reactions in wheat. Homology modeling experiments in which each of the substrates tricetin, selgin and tricin, was docked into the model revealed a number of amino acid residues putatively involved in substrate binding and catalysis. Results suggest that substrate binding is mediated by an extensive network of H-bonds and van der Waals interactions. Mutational analysis of structurally-guided active site residues identified those involved in binding and catalysis. A possible reaction mechanism is discussed. The biological significance of this methylation reaction was also investigated by analyzing its expression, enzyme activity patterns at different wheat developmental stages, in response to cold acclimation and to different abiotic stresses such as salt and drought. Results show that TaOMT2 predominantly accumulates in wheat influorescences compared to leaves, coinciding with the increased methyltransferase activity in the influorescence tissues. The effect of abiotic stresses on wheat reveals that TaOMT2 accumulates in cold-acclimated winter wheat leaves. In contrast, TaOMT2 activity with tricetin as a substrate shows a tendency to decrease during cold acclimation. Other abiotic stresses, such as salt and drought have no effects on TaOMT2 accumulation in wheat leaves, but a slight decrease in activity. The importance of tricetin methylation during developmental stages and during abiotic stresses is discussed

    Structure-function relationships of wheat flavone O-methyltransferase: Homology modeling and site-directed mutagenesis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Wheat (<it>Triticum aestivum </it>L.) <it>O</it>-methyltransferase (TaOMT2) catalyzes the sequential methylation of the flavone, tricetin, to its 3'-methyl- (selgin), 3',5'-dimethyl- (tricin) and 3',4',5'-trimethyl ether derivatives. Tricin, a potential multifunctional nutraceutical, is the major enzyme reaction product. These successive methylations raised the question as to whether they take place in one, or different active sites. We constructed a 3-D model of this protein using the crystal structure of the highly homologous <it>Medicago sativa </it>caffeic acid/5-hydroxyferulic acid <it>O</it>-methyltransferase (MsCOMT) as a template with the aim of proposing a mechanism for multiple methyl transfer reactions in wheat.</p> <p>Results</p> <p>This model revealed unique structural features of TaOMT2 which permit the stepwise methylation of tricetin. Substrate binding is mediated by an extensive network of H-bonds and van der Waals interactions. Mutational analysis of structurally guided active site residues identified those involved in binding and catalysis. The partly buried tricetin active site, as well as proximity and orientation effects ensured sequential methylation of the substrate within the same pocket. Stepwise methylation of tricetin involves deprotonation of its hydroxyl groups by a His262-Asp263 pair followed by nucleophilic attack of SAM-methyl groups. We also demonstrate that Val309, which is conserved in a number of graminaceous flavone OMTs, defines the preference of TaOMT2 for tricetin as the substrate.</p> <p>Conclusions</p> <p>We propose a mechanism for the sequential methylation of tricetin, and discuss the potential application of TaOMT2 to increase the production of tricin as a nutraceutical. The single amino acid residue in TaOMT2, Val309, determines its preference for tricetin as the substrate, and may define the evolutionary differences between the two closely related proteins, COMT and flavone OMT.</p
    corecore