10 research outputs found

    Incidence of hip fracture in Saudi Arabia and the development of a FRAX model

    Get PDF
    Summary A prospective hospital-based survey in representative regions of Saudi Arabia determined the incidence of fractures at the hip. The hip fracture rates were used to create a FRAX® model to facilitate fracture risk assessment in Saudi Arabia. Objective This paper describes the incidence of hip fracture in the Kingdom of Saudi Arabia that was used to characterize the current and future burden of hip fracture, to develop a country-specific FRAX® tool for fracture prediction and to compare fracture probabilities with neighbouring countries. Methods During a 2-year (2017/2018) prospective survey in 15 hospitals with a defined catchment population, hip fractures in Saudi citizens were prospectively identified from hospital registers. The number of hip fractures and future burden was determined from national demography. Age- and sex-specific incidence of hip fracture and national mortality rates were incorporated into a FRAX model for Saudi Arabia. Fracture probabilities were compared with those from Kuwait and Abu Dhabi. Results The incidence of hip fracture applied nationally suggested that the estimated number of hip fractures nationwide in persons over the age of 50 years for 2015 was 2,949 and is predicted to increase nearly sevenfold to 20,328 in 2050. Hip fracture rates were comparable with estimates from Abu Dhabi and Kuwait. By contrast, probabilities of a major osteoporotic fracture or hip fracture from the age of 70 years were much lower than those seen in Abu Dhabi and Kuwait due to higher mortality estimates for Saudi Arabia. Conclusion A country-specific FRAX tool for fracture prediction has been developed for Saudi Arabia which is expected to help guide decisions about treatment

    Case report of Stomoxys calcitrans bites in residential area of Kashan, Iran

    No full text
    Stomoxys calcitrans has spread throughout the world and can be found anywhere food and weather conditions are desired. This is the first report of fly biting in Iran caused by Stomoxys calcitrans in Ravand, West of Kashan, central of Iran. Based on our survey, traditional home aviary in the garden courtyard was the development and breeding place of these flies. These flies can painfuly bit during the day. The larvaes and pupa were removed from birdhouse floor and transported to Entomology laboratory of Environmental Health Group, Kashan University of Medical Sciences. Laboratory tests determined that larvaes and pupa belonged to Stomoxys calcitrans species. By using insecticide spraying in the aviary floor by Sevin, bitings were stopped. The present study was the first report on the stable fly bites in Iran. Consumption remaining of vegetables as food in aviary house would attract reproduction of the Stomoxys calcitrans flies

    Pharmacological and Therapeutic Aspects of Plants from the Genus Ferula: A Comprehensive Review

    No full text

    Magnetospheric Science Objectives of the Juno Mission

    Full text link
    In July 2016, NASA’s Juno mission becomes the first spacecraft to enter polar orbit of Jupiter and enture deep into unexplored polar territories of the magnetosphere. Focusing on these polar regions, we review current understanding of the structure and dynamics of the magnetosphere and summarize the outstanding issues. The Juno mission profile involves (a) a several-week approach from the dawn side of Jupiter’s magnetosphere, with an orbit-insertion maneuver on July 6, 2016; (b) a 107-day capture orbit, also on the dawn flank; and (c) a series of thirty 11-day science orbits with the spacecraft flying over Jupiter’s poles and ducking under the radiation belts. We show how Juno’s view of the magnetosphere evolves over the year of science orbits. The Juno spacecraft carries a range of instruments that take particles and fields measurements, remote sensing observations of auroral emissions at UV, visible, IR and radio wavelengths, and detect microwave emission from Jupiter’s radiation belts. We summarize how these Juno measurements address issues of auroral processes, microphysical plasma physics, ionosphere-magnetosphere and satellite-magnetosphere coupling, sources and sinks of plasma, the radiation belts, and the dynamics of the outer magnetosphere. To reach Jupiter, the Juno spacecraft passed close to the Earth on October 9, 2013, gaining the necessary energy to get to Jupiter. The Earth flyby provided an opportunity to test Juno’s instrumentation as well as take scientific data in the terrestrial magnetosphere, in conjunction with ground-based and Earth-orbiting assets

    Saturn Plasma Sources and Associated Transport Processes

    No full text

    1. Transport of Mass, Momentum and Energy in Planetary Magnetodisc Regions

    No full text
    corecore