4,083 research outputs found
Lattice study of two-dimensional N=(2,2) super Yang-Mills at large-N
We study two-dimensional N=(2,2) SU(N) super Yang-Mills theory on Euclidean
two-torus using Sugino's lattice regularization. We perform the Monte-Carlo
simulation for N=2,3,4,5 and then extrapolate the result to N = infinity. With
the periodic boundary conditions for the fermions along both circles, we
establish the existence of a bound state in which scalar fields clump around
the origin, in spite of the existence of a classical flat direction. In this
phase the global (Z_N)^2 symmetry turns out to be broken. We provide a simple
explanation for this fact and discuss its physical implications.Comment: 24 pages, 13 figure
The Interplay of Spin and Charge Channels in Zero Dimensional Systems
We present a full fledged quantum mechanical treatment of the interplay
between the charge and the spin zero-mode interactions in quantum dots. Quantum
fluctuations of the spin-mode suppress the Coulomb blockade and give rise to
non-monotonic behavior near this point. They also greatly enhance the dynamic
spin susceptibility. Transverse fluctuations become important as one approaches
the Stoner instability. The non-perturbative effects of zero-mode interaction
are described in terms of charge (U(1)) and spin (SU(2)) gauge bosons.Comment: 4.5 pages, 2 figure
Absence of sign problem in two-dimensional N=(2,2) super Yang-Mills on lattice
We show that N=(2,2) SU(N) super Yang-Mills theory on lattice does not have
sign problem in the continuum limit, that is, under the phase-quenched
simulation phase of the determinant localizes to 1 and hence the phase-quench
approximation becomes exact. Among several formulations, we study models by
Cohen-Kaplan-Katz-Unsal (CKKU) and by Sugino. We confirm that the sign problem
is absent in both models and that they converge to the identical continuum
limit without fine tuning. We provide a simple explanation why previous works
by other authors, which claim an existence of the sign problem, do not capture
the continuum physics.Comment: 27 pages, 24 figures; v2: comments and references added; v3: figures
on U(1) mass independence and references added, to appear in JHE
Real-time testing of the on-site warning algorithm in southern California and its performance during the July 29 2008 M_w5.4 Chino Hills earthquake
The real-time performance of the Ï_c -P_d on-site early warning algorithm currently is being tested within the California Integrated Seismic Network (CISN). Since January 2007, the algorithm has detected 58 local earthquakes in southern California and Baja with moment magnitudes of 3.0 †M_w †5.4. Combined with newly derived station corrections the algorithm allowed for rapid determination of moment magnitudes and Modified Mercalli Intensity (MMI) with uncertainties of ±0.5 and ±0.7 units, respectively. The majority of reporting delays ranged from 9 to 16 s. The largest event, the July 29 2008 M_w5.4 Chino Hills earthquake, triggered a total of 60 CISN stations in epicentral distances of up to 250 km. Magnitude predictions at these stations ranged from M_w4.4 to M_w6.5 with a median of M_w5.6. The closest station would have provided up to 6 s warning at Los Angeles City Hall, located 50 km to the west-northwest of Chino Hills
Variational cluster approach to correlated electron systems in low dimensions
A self-energy-functional approach is applied to construct cluster
approximations for correlated lattice models. It turns out that the
cluster-perturbation theory (Senechal et al, PRL 84, 522 (2000)) and the
cellular dynamical mean-field theory (Kotliar et al, PRL 87, 186401 (2001)) are
limiting cases of a more general cluster method. Results for the
one-dimensional Hubbard model are discussed with regard to boundary conditions,
bath degrees of freedom and cluster size.Comment: 4 pages, final version with minor change
Searching and fixating: scale-invariance vs. characteristic timescales in attentional processes
In an experiment involving semantic search, the visual movements of sample
populations subjected to visual and aural input were tracked in a taskless
paradigm. The probability distributions of saccades and fixations were obtained
and analyzed. Scale-invariance was observed in the saccadic distributions,
while the fixation distributions revealed the presence of a characteristic
(attentional) time scale for literate subjects. A detailed analysis of our
results suggests that saccadic eye motions are an example of Levy, rather than
Brownian, dynamics.Comment: Accepted to Europhysics Letters (2011
Formulation of Supersymmetry on a Lattice as a Representation of a Deformed Superalgebra
The lattice superalgebra of the link approach is shown to satisfy a Hopf
algebraic supersymmetry where the difference operator is introduced as a
momentum operator. The breakdown of the Leibniz rule for the lattice difference
operator is accommodated as a coproduct operation of (quasi)triangular Hopf
algebra and the associated field theory is consistently defined as a braided
quantum field theory. Algebraic formulation of path integral is perturbatively
defined and Ward-Takahashi identity can be derived on the lattice. The claimed
inconsistency of the link approach leading to the ordering ambiguity for a
product of fields is solved by introducing an almost trivial braiding structure
corresponding to the triangular structure of the Hopf algebraic superalgebra.
This could be seen as a generalization of spin and statistics relation on the
lattice. From the consistency of this braiding structure of fields a grading
nature for the momentum operator is required.Comment: 45 page
Coordination Dependence of Hyperfine Fields of 5sp Impurities on Ni Surfaces
We present first-principles calculations of the magnetic hyperfine fields H
of 5sp impurities on the (001), (111), and (110) surfaces of Ni. We examine the
dependence of H on the coordination number by placing the impurity in the
surfaces, on top of them at the adatom positions, and in the bulk. We find a
strong coordination dependence of H, different and characteristic for each
impurity. The behavior is explained in terms of the on-site s-p hybridization
as the symmetry is reduced at the surface. Our results are in agreement with
recent experimental findings.Comment: 4 pages, 3 figure
- âŠ