424 research outputs found
Dosimetric basis and spot scanning irradiation system for cyclotron proton beam
Thesis--University of Tsukuba, D.Sc.(B), no. 116, 1983. 1. 3
A CT calibration method based on the polybinary tissue model for radiotherapy treatment planning
A method to establish the relationship between CT number and effective density for therapeutic radiations is proposed. We approximated body tissues to mixtures of muscle, air, fat, and bone. Consequently, the relationship can be calibrated only with a CT scan of their substitutes, for which we chose water, air, ethanol, and potassium phosphate solution, respectively. With simple and specific corrections for non-equivalencies of the substitutes, the calibration accuracy of 1% will be achieved. We tested the calibration method with some biological materials to verify that the proposed method would offer accuracy, simplicity, and specificity required for a standard in radiotherapy treatment planning, in particular, with heavy charged particles
Treatment planning for the layer-stacking irradiation system for three-dimensional conformal heavy-ion radiotherapy
We have upgraded a heavy-ion radiotherapy treatment-planning system to adapt for the layer-stacking irradiation method, which is to conform a variable spread-out Bragg peak to a target volume by means of dynamic control of the conventional beam-modifying devices. The biophysical model, the beam-setup logic, and the dose-calculation algorithm implemented for the layer-stacking method are described and the expected clinical usability is discussed. The layer-stacking method was integrated in perfect accordance with the ongoing conventional treatments so that the established protocols, which are the clinically optimized dose fractionation schemes, will still be valid. On the other hand, a simulation study indicated a substantial improvement of dose distribution with the layer-stacking method though the significance may depend on the size, shape, and location of the tumor. The completed treatment system will provide an option for improved conformal radiotherapy without interfering with the conventional method and we expect a gradual expansion of the clinical cases applicable to the layer-stacking method
Dosimetric impact of stopping power for human bone porosity with dual-energy computed tomography in scanned carbon-ion therapy treatment planning
Yagi M., Wakisaka Y., Takeno J., et al. Dosimetric impact of stopping power for human bone porosity with dual-energy computed tomography in scanned carbon-ion therapy treatment planning. Scientific Reports 14, 17440 (2024); https://doi.org/10.1038/s41598-024-68312-y.Few reports have documented how the accuracy of stopping power ratio (SPR) prediction for porous bone tissue affects the dose distribution of scanned carbon-ion beam therapy. The estimated SPR based on single-energy computed tomography (SECT) and dual-energy CT (DECT) were compared for the femur of a Rando phantom which simulates the porosity of human bone, NEOBONE which is the hydroxyapatite synthetic bone substitute, and soft tissue samples. Dose differences between SECT and DECT were evaluated for a scanned carbon-ion therapy treatment plan for the Rando phantom. The difference in the water equivalent length was measured to extract the SPR of the examined samples. The differences for SPR estimated from the DECT-SPR conversion were small with β 1.8% and β 3.3% for the Rando phantom femur and NEOBONE, respectively, whereas the differences for SECT-SPR were between 7.6 and 70.7%, illustrating a 1.5-mm shift of the range and a dose difference of 13.3% at maximum point in the evaluation of the dose distribution. This study demonstrated that the DECT-SPR conversion method better estimated the SPR of the porosity of bone tissues than SECT-SPR followed by the accurate range of the carbon-ion beams on carbon-ion dose calculations
Development and characterization of a dedicated dose monitor for ultrahigh-dose-rate scanned carbon-ion beams
Yagi M., Shimizu S., Hamatani N., et al. Development and characterization of a dedicated dose monitor for ultrahigh-dose-rate scanned carbon-ion beams. Scientific Reports 14, 11574 (2024); https://doi.org/10.1038/s41598-024-62148-2.The current monochromatic beam mode (i.e., uHDR irradiation mode) of the scanned carbon-ion beam lacks a dedicated dose monitor, making the beam control challenging. We developed and characterized a dedicated dose monitor for uHDR-scanned carbon-ion beams. Furthermore, a simple measurable dose rate (dose rate per spot (DRspot)) was suggested by using the developed dose monitor and experimentally validating quantities relevant to the uHDR scanned carbon-ion beam. A large plane-parallel ionization chamber (IC) with a smaller electrode spacing was used to reduce uHDR recombination effects, and a dedicated operational amplifier was manufactured for the uHDR-scanned carbon-ion beam. The dose linearity of the IC was within Β± 1% in the range of 1.8β12.3 Gy. The spatial inhomogeneity of the dose response of the IC was Β± 0.38% inside the Β± 40-mm detector area, and a systematic deviation of approximately 2% was measured at the edge of the detector. uHDR irradiation with beam scanning was tested and verified for different doses at the corresponding dose rates (in terms of both the average dose rate and DRspot). We confirmed that the dose monitor can highlight the characteristics (i.e., dose, dose rate, and dose profile) of uHDR-scanned carbon-ion beams at several dose levels in the monochromatic beamΒ mode
- β¦