2 research outputs found

    Exact solution and asymptotic behaviour of the asymmetric simple exclusion process on a ring

    Full text link
    In this paper, we study an exact solution of the asymmetric simple exclusion process on a periodic lattice of finite sites with two typical updates, i.e., random and parallel. Then, we find that the explicit formulas for the partition function and the average velocity are expressed by the Gauss hypergeometric function. In order to obtain these results, we effectively exploit the recursion formula for the partition function for the zero-range process. The zero-range process corresponds to the asymmetric simple exclusion process if one chooses the relevant hop rates of particles, and the recursion gives the partition function, in principle, for any finite system size. Moreover, we reveal the asymptotic behaviour of the average velocity in the thermodynamic limit, expanding the formula as a series in system size.Comment: 10 page
    corecore