2 research outputs found
Exact solution and asymptotic behaviour of the asymmetric simple exclusion process on a ring
In this paper, we study an exact solution of the asymmetric simple exclusion
process on a periodic lattice of finite sites with two typical updates, i.e.,
random and parallel. Then, we find that the explicit formulas for the partition
function and the average velocity are expressed by the Gauss hypergeometric
function. In order to obtain these results, we effectively exploit the
recursion formula for the partition function for the zero-range process. The
zero-range process corresponds to the asymmetric simple exclusion process if
one chooses the relevant hop rates of particles, and the recursion gives the
partition function, in principle, for any finite system size. Moreover, we
reveal the asymptotic behaviour of the average velocity in the thermodynamic
limit, expanding the formula as a series in system size.Comment: 10 page