3,948 research outputs found

    Reading the Number of Extra Dimensions in the Spectrum of Hawking Radiation

    Full text link
    After a brief review of the production and decay of Schwarzschild-like (4+n)-dimensional black holes in the framework of theories with Large Extra Dimensions, we proceed to derive the greybody factors and emission rates for scalars, fermions and gauge bosons on the brane. We present and discuss analytic and numerical methods for obtaining the above results, and demonstrate that both the amount and type of Hawking radiation emitted by the black hole can help us to determine the number of spacelike dimensions that exist in nature.Comment: 8 pages, Latex file, 1 figure, to appear in the proceedings of the String Phenomenology 2003 Conference, Durham, UK, 29th July-4th August, 200

    Calibration of the Particle Density in Cellular-Automaton Models for Traffic Flow

    Full text link
    We introduce density dependence of the cell size in cellular-automaton models for traffic flow, which allows a more precise correspondence between real-world phenomena and what observed in simulation. Also, we give an explicit calibration of the particle density particularly for the asymmetric simple exclusion process with some update rules. We thus find that the present method is valid in that it reproduces a realistic flow-density diagram.Comment: 2 pages, 2 figure

    Electrical control of Kondo effect and superconducting transport in a side-gated InAs quantum dot Josephson junction

    Full text link
    We measure the non-dissipative supercurrent in a single InAs self-assembled quantum dot (QD) coupled to superconducting leads. The QD occupation is both tuned by a back-gate electrode and lateral side-gate. The geometry of the side-gate allows tuning of the QD-lead tunnel coupling in a region of constant electron number with appropriate orbital state. Using the side-gate effect we study the competition between Kondo correlations and superconducting pairing on the QD, observing a decrease in the supercurrent when the Kondo temperature is reduced below the superconducting energy gap in qualitative agreement with theoretical predictions

    Observation of Conduction Band Satellite of Ni Metal by 3p-3d Resonant Inverse Photoemission Study

    Full text link
    Resonant inverse photoemission spectra of Ni metal have been obtained across the Ni 3pp absorption edge. The intensity of Ni 3dd band just above Fermi edge shows asymmetric Fano-like resonance. Satellite structures are found at about 2.5 and 4.2 eV above Fermi edge, which show resonant enhancement at the absorption edge. The satellite structures are due to a many-body configuration interaction and confirms the existence of 3d8d^8 configuration in the ground state of Ni metal.Comment: 4 pages, 3 figures, submitted to Physical Review Letter

    Entanglement of orbital angular momentum states between an ensemble of cold atoms and a photon

    Get PDF
    Recently, atomic ensemble and single photons were successfully entangled by using collective enhancement [D. N. Matsukevich, \textit{et al.}, Phys. Rev. Lett. \textbf{95}, 040405(2005).], where atomic internal states and photonic polarization states were correlated in nonlocal manner. Here we experimentally clarified that in an ensemble of atoms and a photon system, there also exists an entanglement concerned with spatial degrees of freedom. Generation of higher-dimensional entanglement between remote atomic ensemble and an application to condensed matter physics are also discussed.Comment: 5 pages, 3 figure

    Exact solution and asymptotic behaviour of the asymmetric simple exclusion process on a ring

    Full text link
    In this paper, we study an exact solution of the asymmetric simple exclusion process on a periodic lattice of finite sites with two typical updates, i.e., random and parallel. Then, we find that the explicit formulas for the partition function and the average velocity are expressed by the Gauss hypergeometric function. In order to obtain these results, we effectively exploit the recursion formula for the partition function for the zero-range process. The zero-range process corresponds to the asymmetric simple exclusion process if one chooses the relevant hop rates of particles, and the recursion gives the partition function, in principle, for any finite system size. Moreover, we reveal the asymptotic behaviour of the average velocity in the thermodynamic limit, expanding the formula as a series in system size.Comment: 10 page

    Self-magnetic compensation and Exchange Bias in ferromagnetic Samarium systems

    Full text link
    For Sm(3+) ions in a vast majority of metallic systems, the following interesting scenario has been conjured up for long, namely, a magnetic lattice of tiny self (spin-orbital) compensated 4f-moments exchange coupled (and phase reversed) to the polarization in the conduction band. We report here the identification of a self-compensation behavior in a variety of ferromagnetic Sm intermetallics via the fingerprint of a shift in the magnetic hysteresis (M-H) loop from the origin. Such an attribute, designated as exchange bias in the context of ferromagnetic/antiferromagnetic multilayers, accords these compounds a potential for niche applications in spintronics. We also present results on magnetic compensation behavior on small Gd doping (2.5 atomic percent) in one of the Sm ferromagnets (viz. SmCu(4)Pd). The doped system responds like a pseudo-ferrimagnet and it displays a characteristic left-shifted linear M-H plot for an antiferromagnet.Comment: 7 pages and 7 figure

    Depth profile photoemission study of thermally diffused Mn/GaAs (001) interfaces

    Full text link
    We have performed a depth profile study of thermally diffused Mn/GaAs (001) interfaces using photoemission spectroscopy combined with Ar+^+-ion sputtering. We found that Mn ion was thermally diffused into the deep region of the GaAs substrate and completely reacted with GaAs. In the deep region, the Mn 2pp core-level and Mn 3dd valence-band spectra of the Mn/GaAs (001) sample heated to 600 ^{\circ}C were similar to those of Ga1x_{1-x}Mnx_xAs, zinc-blende-type MnAs dots, and/or interstitial Mn in tetrahedrally coordinated by As atoms, suggesting that the Mn 3dd states were essentially localized but were hybridized with the electronic states of the host GaAs. Ferromagnetism was observed in the dilute Mn phase.Comment: 5 pages, 4 figure
    corecore