3,948 research outputs found
Reading the Number of Extra Dimensions in the Spectrum of Hawking Radiation
After a brief review of the production and decay of Schwarzschild-like
(4+n)-dimensional black holes in the framework of theories with Large Extra
Dimensions, we proceed to derive the greybody factors and emission rates for
scalars, fermions and gauge bosons on the brane. We present and discuss
analytic and numerical methods for obtaining the above results, and demonstrate
that both the amount and type of Hawking radiation emitted by the black hole
can help us to determine the number of spacelike dimensions that exist in
nature.Comment: 8 pages, Latex file, 1 figure, to appear in the proceedings of the
String Phenomenology 2003 Conference, Durham, UK, 29th July-4th August, 200
Calibration of the Particle Density in Cellular-Automaton Models for Traffic Flow
We introduce density dependence of the cell size in cellular-automaton models
for traffic flow, which allows a more precise correspondence between real-world
phenomena and what observed in simulation. Also, we give an explicit
calibration of the particle density particularly for the asymmetric simple
exclusion process with some update rules. We thus find that the present method
is valid in that it reproduces a realistic flow-density diagram.Comment: 2 pages, 2 figure
Electrical control of Kondo effect and superconducting transport in a side-gated InAs quantum dot Josephson junction
We measure the non-dissipative supercurrent in a single InAs self-assembled
quantum dot (QD) coupled to superconducting leads. The QD occupation is both
tuned by a back-gate electrode and lateral side-gate. The geometry of the
side-gate allows tuning of the QD-lead tunnel coupling in a region of constant
electron number with appropriate orbital state. Using the side-gate effect we
study the competition between Kondo correlations and superconducting pairing on
the QD, observing a decrease in the supercurrent when the Kondo temperature is
reduced below the superconducting energy gap in qualitative agreement with
theoretical predictions
Observation of Conduction Band Satellite of Ni Metal by 3p-3d Resonant Inverse Photoemission Study
Resonant inverse photoemission spectra of Ni metal have been obtained across
the Ni 3 absorption edge. The intensity of Ni 3 band just above Fermi
edge shows asymmetric Fano-like resonance. Satellite structures are found at
about 2.5 and 4.2 eV above Fermi edge, which show resonant enhancement at the
absorption edge. The satellite structures are due to a many-body configuration
interaction and confirms the existence of 3 configuration in the ground
state of Ni metal.Comment: 4 pages, 3 figures, submitted to Physical Review Letter
Entanglement of orbital angular momentum states between an ensemble of cold atoms and a photon
Recently, atomic ensemble and single photons were successfully entangled by
using collective enhancement [D. N. Matsukevich, \textit{et al.}, Phys. Rev.
Lett. \textbf{95}, 040405(2005).], where atomic internal states and photonic
polarization states were correlated in nonlocal manner. Here we experimentally
clarified that in an ensemble of atoms and a photon system, there also exists
an entanglement concerned with spatial degrees of freedom. Generation of
higher-dimensional entanglement between remote atomic ensemble and an
application to condensed matter physics are also discussed.Comment: 5 pages, 3 figure
Exact solution and asymptotic behaviour of the asymmetric simple exclusion process on a ring
In this paper, we study an exact solution of the asymmetric simple exclusion
process on a periodic lattice of finite sites with two typical updates, i.e.,
random and parallel. Then, we find that the explicit formulas for the partition
function and the average velocity are expressed by the Gauss hypergeometric
function. In order to obtain these results, we effectively exploit the
recursion formula for the partition function for the zero-range process. The
zero-range process corresponds to the asymmetric simple exclusion process if
one chooses the relevant hop rates of particles, and the recursion gives the
partition function, in principle, for any finite system size. Moreover, we
reveal the asymptotic behaviour of the average velocity in the thermodynamic
limit, expanding the formula as a series in system size.Comment: 10 page
Self-magnetic compensation and Exchange Bias in ferromagnetic Samarium systems
For Sm(3+) ions in a vast majority of metallic systems, the following
interesting scenario has been conjured up for long, namely, a magnetic lattice
of tiny self (spin-orbital) compensated 4f-moments exchange coupled (and phase
reversed) to the polarization in the conduction band. We report here the
identification of a self-compensation behavior in a variety of ferromagnetic Sm
intermetallics via the fingerprint of a shift in the magnetic hysteresis (M-H)
loop from the origin. Such an attribute, designated as exchange bias in the
context of ferromagnetic/antiferromagnetic multilayers, accords these compounds
a potential for niche applications in spintronics. We also present results on
magnetic compensation behavior on small Gd doping (2.5 atomic percent) in one
of the Sm ferromagnets (viz. SmCu(4)Pd). The doped system responds like a
pseudo-ferrimagnet and it displays a characteristic left-shifted linear M-H
plot for an antiferromagnet.Comment: 7 pages and 7 figure
Depth profile photoemission study of thermally diffused Mn/GaAs (001) interfaces
We have performed a depth profile study of thermally diffused Mn/GaAs (001)
interfaces using photoemission spectroscopy combined with Ar-ion
sputtering. We found that Mn ion was thermally diffused into the deep region of
the GaAs substrate and completely reacted with GaAs. In the deep region, the Mn
2 core-level and Mn 3 valence-band spectra of the Mn/GaAs (001) sample
heated to 600 C were similar to those of GaMnAs,
zinc-blende-type MnAs dots, and/or interstitial Mn in tetrahedrally coordinated
by As atoms, suggesting that the Mn 3 states were essentially localized but
were hybridized with the electronic states of the host GaAs. Ferromagnetism was
observed in the dilute Mn phase.Comment: 5 pages, 4 figure
Recommended from our members
Predictions shape confidence in the right inferior frontal gyrus
It is clear that prior expectations shape perceptual decision-making, yet their contribution to the construction of subjective decision confidence remains largely unexplored. We recorded fMRI data while participants made perceptual decisions and confidence judgements, controlling for potential confounds of attention. We recorded fMRI data while participants made perceptual decisions accompanied by confidence judgements, controlling for potential confounds of attention. Results show that subjective confidence increases as perceptual prior expectations increasingly support the decision, and that this relationship is associated with BOLD activity in right inferior frontal gyrus (rIFG). Specifically, rIFG is sensitive to the discrepancy between expectation and decision (mismatch), and, crucially, higher mismatch responses are associated with lower decision confidence. Connectivity analyses revealed the source of the expectancy information to be bilateral orbitofrontal cortex (OFC) and the source of sensory signals to be intracalcarine sulcus. Altogether, our results indicate that predictive information is integrated into subjective confidence in rIFG, and reveal an occipital-frontal network that constructs confidence from top-down and bottom-up signals. This interpretation was further supported by exploratory findings that the white matter density of intracalcarine sulcus and OFC negatively predicted their respective contributions to the construction of confidence. Our findings advance our understanding of the neural basis of subjective perceptual processes by revealing an occipito-frontal functional network that integrates prior beliefs into the construction of confidence
- …