33 research outputs found

    Elicitin-responsive lectin-like receptor kinase genes in BY-2 cells

    Get PDF
    The inhibition of elicitor-induced plant defense responses by the protein kinase inhibitors K252a and staurosporine indicates that defense responses require protein phosphorylation. We isolated a cDNA clone encoding Nicotiana tabacum lectin-like receptor protein kinase 1 ( NtlecRK1), an elicitor-responsive gene; in tobacco bright yellow ( BY-2) cells by a differential display method. NtlecRK forms a gene family with at least three members in tobacco. All three NtlecRK genes potentially encode the N-terminal legume lectin domain, transmembrane domain and C-terminal Ser/Thr-type protein kinase domain. Green fluorescent protein ( GFP) fusion showed that the NtlecRK1 protein was located on the plasma membrane. In addition, NtlecRK1 and 3 were responsive to INF1 elicitin and the bacterial elicitor harpin. These results indicate that NtlecRKs are membrane-located protein kinases that are induced during defense responses in BY-2 cells.</p

    ジェンダーの視点を法学教育に生かすための諸課題 : 米国フェミニズム法学教育者インタビュー調査から

    Get PDF
    本論文は、ジェンダー法学の現状と課題を、その「アカウンタビリティーを問う」という視点で検討する。この研究は、同じく科学研究費補助金基盤研究(C)( 2 )による先行研究である「ジェンダー理論の法学教育への統合的モデル構築にむけた現状と課題の実践的研究」(研究代表者 : 京都女子大学現代社会学部南野佳代)を深化、展開する目的のもので、『現代社会研究』第7号でも触れたように三つの角度からの共同研究を含んでいる。本共同研究は、そのうちの、ジェンダー理論に教育制度や担い手の側から光をあててその現状と課題を問うものであって、米国のジェンダー法学教育者に対して行ったインタビューを素材に、法学教育におけるジェンダーないしフェミニズムの視点導入の意義と課題を論じている。As one of the results of the research project "The Accountability of Feminist Jurisprudence," this article addresses the significance and theme of introducing gender perspectives into law school education, focusing on the interviews done with the professors teaching gender perspectives in law schools in the United States

    N-terminal domain including conserved flg22 is required for flagellin-induced hypersensitive cell death in Arabidopsis thaliana

    Get PDF
    Flagellin in Pseudomonas syringae is a potent elicitor of defense responses including hypersensitive cell death in dicot plants. The oligopeptides flg22 consisting of 22 conserved amino acids near the N-terminus of flagellins is reported to induce plant defense responses. Because glycosylation of the central domain of flagellin affects its elicitor activity, we investigated whether any peptide sequence in addition to flg22 is required for flagellin-induced hypersensitive reaction. A study of recombinant flagellin polypeptides indicated that the N-terminal domain including the conserved flg22 is required for flagellin-induced hypersensitive cell death in Arabidopsis thaliana.</p

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    Get PDF
    「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target

    The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force

    Get PDF
    「コロナ制圧タスクフォース」COVID-19患者由来の血液細胞における遺伝子発現の網羅的解析 --重症度に応じた遺伝子発現の変化には、ヒトゲノム配列の個人差が影響する--. 京都大学プレスリリース. 2022-08-23.Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection

    Cyclometalated Iridium(III) Complex–Cationic Peptide Hybrids Trigger Paraptosis in Cancer Cells via an Intracellular Ca<sup>2+</sup> Overload from the Endoplasmic Reticulum and a Decrease in Mitochondrial Membrane Potential

    No full text
    In our previous paper, we reported that amphiphilic Ir complex–peptide hybrids (IPHs) containing basic peptides such as KK(K)GG (K: lysine, G: glycine) (e.g., ASb-2) exhibited potent anticancer activity against Jurkat cells, with the dead cells showing a strong green emission. Our initial mechanistic studies of this cell death suggest that IPHs would bind to the calcium (Ca2+)–calmodulin (CaM) complex and induce an overload of intracellular Ca2+, resulting in the induction of non-apoptotic programmed cell death. In this work, we conduct a detailed mechanistic study of cell death induced by ASb-2, a typical example of IPHs, and describe how ASb-2 induces paraptotic programmed cell death in a manner similar to that of celastrol, a naturally occurring triterpenoid that is known to function as a paraptosis inducer in cancer cells. It is suggested that ASb-2 (50 µM) induces ER stress and decreases the mitochondrial membrane potential (ΔΨm), thus triggering intracellular signaling pathways and resulting in cytoplasmic vacuolization in Jurkat cells (which is a typical phenomenon of paraptosis), while the change in ΔΨm values is negligibly induced by celastrol and curcumin. Other experimental data imply that both ASb-2 and celastrol induce paraptotic cell death in Jurkat cells, but this induction occurs via different signaling pathways
    corecore