24 research outputs found

    Evidence for late glacial oceanic carbon redistribution and discharge from the Pacific Southern Ocean

    Get PDF
    Southern Ocean deep-water circulation plays an important role in the global carbon cycle. On geological time-scales, upwelling along the Chilean continental margin likely contributed to the deglacial atmospheric carbon dioxide rise, but little quantitative evidence exists of carbon storage. Here, we use a new X-ray Micro-Computer-Tomography method to assess foraminiferal test dissolution as proxy for paleo-carbonate ion concentrations [CO3^2−]. Our subantarctic Southeast Pacific sediment core depth transect shows significant deep-water [CO3^2−] variations during the Last Glacial Maximum and Deglaciation (10 – 22 ka BP). We provide evidence for an increase in [CO3^2−] during the early deglacial period (15-19 ka BP), followed by a ca. 40 µmol kg^-1 reduction in Lower Circumpolar Deepwater (CDW). This decreased Pacific to Atlantic export of low-carbon CDW contributed to significantly lowered carbon storage within the Southern Ocean, highlighting the importance of a dynamic Pacific–Southern Ocean deep-water reconfiguration for shaping late-glacial oceanic carbon storage, and subsequent deglacial oceanic-atmospheric CO2 transfer

    The ultrasound-guided nerve blocks of abdominal wall contributed to anesthetic management of cholecystectomy in a patient with Becker muscular dystrophy without using muscle relaxants

    No full text
    Abstract Becker muscular dystrophy (BMD) is a progressive neuromuscular disorder caused by mutations in the dystrophin gene. The sensitivity to non-depolarizing muscle relaxant in a patient with muscle dystrophy is reportedly higher than that in normal individuals, and the duration of the effect is known to be prolonged. In this report, we present the case of a 58-year-old man with BMD who underwent laparoscopic cholecystectomy for symptomatic cholelithiasis under total intravenous anesthesia without the use of muscle-relaxant drugs and supplemented with regional anesthesia. Anesthesia was induced and maintained with propofol, remifentanil, and fentanyl; ultrasound-guided bilateral rectus sheath block (RSB) and right-sided subcostal transversus abdominis plane block (TAP) were performed. The procedure required conversion to open surgery because of hard conglutination; intraoperative and postoperative periods were uneventful. Adequate analgesia was maintained after extubation because of the effect of RSB and TAP

    Fluctuations in Intestinal Microbiota Following Ingestion of Natto Powder Containing <i>Bacillus subtilis var. natto</i> SONOMONO Spores: Considerations Using a Large-Scale Intestinal Microflora Database

    No full text
    Improving the intestinal microbiota using probiotics, prebiotics, and synbiotics has attracted attention as a method of disease prevention and treatment. This is the first study to discuss the effects of food intake on the intestinal microbiota using a large Japanese intestinal microbiota database. Here, as a case study, we determined changes in the intestinal microbiota caused by ingestion of a processed natto food containing B. subtilisvar. natto SONOMONO spores, SONOMONO NATTO POWDER CAPSULESTM, by analyzing 16S rRNA sequence data generated using next-generation sequencing techniques. The results showed that the relative abundance of Bifidobacterium and Blautia as well as the relative abundance of Bifidobacterium were increased in males and females in the ingesting group, respectively. Additionally, the effects of SONOMONO NATTO POWDER CAPSULESTM intake on Bifidobacterium and Blautia abundance depended on the relative abundance of Bifidobacterium at baseline. Finally, analysis of a large Japanese intestinal microbiota database suggested that the bacterial genera that fluctuated with the ingestion of SONOMONO NATTO POWDER CAPSULESTM may be associated with lifestyle-related diseases such as diabetes
    corecore