3,135 research outputs found

    Exciting Complexity: The Role of Motor Circuit Elements in ALS Pathophysiology

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is a fatal disease, characterized by the degeneration of both upper and lower motor neurons. Despite decades of research, we still to date lack a cure or disease modifying treatment, emphasizing the need for a much-improved insight into disease mechanisms and cell type vulnerability. Altered neuronal excitability is a common phenomenon reported in ALS patients, as well as in animal models of the disease, but the cellular and circuit processes involved, as well as the causal relevance of those observations to molecular alterations and final cell death, remain poorly understood. Here, we review evidence from clinical studies, cell type-specific electrophysiology, genetic manipulations and molecular characterizations in animal models and culture experiments, which argue for a causal involvement of complex alterations of structure, function and connectivity of different neuronal subtypes within the cortical and spinal cord motor circuitries. We also summarize the current knowledge regarding the detrimental role of astrocytes and reassess the frequently proposed hypothesis of glutamate-mediated excitotoxicity with respect to changes in neuronal excitability. Together, these findings suggest multifaceted cell type-, brain area- and disease stage- specific disturbances of the excitation/inhibition balance as a cardinal aspect of ALS pathophysiology

    Influence of Grassland Management on Carbon Allocation in a Semiarid Temperate Steppe

    Get PDF
    Grazing lands in North China are often excessively grazed and widely degraded, while hay-making lands appear to be in relatively good condition due to grazing exclusion, but they are facing a continuous loss of nutrients in the harvested biomass. In semiarid grasslands, plant productivity and community composition are significantly altered by grazing and haying. Grazing mostly leads to negative effects on aboveground productivity, however root biomass seems to increase with moderate grazing (Gao et al. 2009; Derner et al. 2006), although responses can vary. Aboveground biomass removal can increase C3 grass dominance and productivity (Hofer and Bragg 1981). Grazing exclusion is a valuable mechanism of sequestering soil C (He 2008). However, grazing can change C allocation patterns and affect the amount of C entering the soil. Here we examine the potential effects of common management practices (exclusion with fencing, grazing and hay-making) on semiarid grasslands above- and below-ground C pools. The primary objective of this study was to evaluate the potential of grazing exclusion and annual last-summer haying in previous grazing lands on the storage of C in semiarid grasslands of northern China

    The thermal equation of state of FeTiO_3 ilmenite based on in situ X-ray diffraction at high pressures and temperatures

    Get PDF
    We present in situ measurements of the unit-cell volume of a natural terrestrial ilmenite (Jagersfontein mine, South Africa) and a synthetic reduced ilmenite (FeTiO_3) at simultaneous high pressure and high temperature up to 16 GPa and 1273 K. Unit-cell volumes were determined using energy-dispersive synchrotron X-ray diffraction in a multi-anvil press. Mössbauer analyses show that the synthetic sample contained insignificant amounts of Fe^(3+) both before and after the experiment. Results were fit to Birch-Murnaghan thermal equations of state, which reproduce the experimental data to within 0.5 and 0.7 GPa for the synthetic and natural samples, respectively. At ambient conditions, the unit-cell volume of the natural sample [V_0 = 314.75 ± 0.23 (1 ) Å^3] is significantly smaller than that of the synthetic sample [V_0 = 319.12 ± 0.26 Å^3]. The difference can be attributed to the presence of impurities and Fe^(3+) in the natural sample. The 1 bar isothermal bulk moduli K_(T0) for the reduced ilmenite is slightly larger than for the natural ilmenite (181 ± 7 and 165 ± 6 GPa, respectively), with pressure derivatives K_0' = 3 ± 1. Our results, combined with literature data, suggest that the unit-cell volume of reduced ilmenite is significantly larger than that of oxidized ilmenite, whereas their thermoelastic parameters are similar. Our data provide more appropriate input parameters for thermo-chemical models of lunar interior evolution, in which reduced ilmenite plays a critical role

    STRENGTH AND CONDITIONING PROGRAMMES FOR IMPROVING BACK MUSCLE FATIGABILITY IN FIREFIGHTERS

    Get PDF
    Back pain and back-related injuries are common in firefighters. The purpose of this study was to compare the effectiveness of two different types of strength and conditioning programmes in improving back muscle fatigability in firefighters. A total of 12 male firefighters completed 16 weeks on supervised exercise intervention programme. The Functional Group was prescribed unilateral movements that mimicked the asymmetrical nature of firefighting tasks. The Conventional Group performed more bilaterally loaded, symmetrical exercise training. The lumbar extensor muscles’ resistance to fatigue was assessed using the Modified Sorensen test with electromyography (EMG). The EMG median frequency slope was less steep (p = 0.023, η²p =0.420) after training, indicating improvement in fatigability. There was no difference between the groups (p = .605, η²p = 0.028) and no interaction effect (p = 0.245, η²p =0.132). In conclusion, a well-rounded strength and conditioning programme is promising in improving back muscle fatigability in firefighters

    Electronic and Magnetic Properties of Partially-Open Carbon Nanotubes

    Full text link
    On the basis of the spin-polarized density functional theory calculations, we demonstrate that partially-open carbon nanotubes (CNTs) observed in recent experiments have rich electronic and magnetic properties which depend on the degree of the opening. A partially-open armchair CNT is converted from a metal to a semiconductor, and then to a spin-polarized semiconductor by increasing the length of the opening on the wall. Spin-polarized states become increasingly more stable than nonmagnetic states as the length of the opening is further increased. In addition, external electric fields or chemical modifications are usable to control the electronic and magnetic properties of the system. We show that half-metallicity may be achieved and the spin current may be controlled by external electric fields or by asymmetric functionalization of the edges of the opening. Our findings suggest that partially-open CNTs may offer unique opportunities for the future development of nanoscale electronics and spintronics.Comment: 6 figures, to appear in J. Am. Chem. So
    • …
    corecore