4,345 research outputs found

    Kondo Effect in Fermi Systems with a Gap: A Renormalization Group Study

    Full text link
    We present the results of a Wilson Renormalization Group study of the single-impurity Kondo and Anderson models in a system with a gap in the conduction electron spectrum. The behavior of the impurity susceptibility and the zero-frequency response function, T>T> are discussed in the cases with and without particle-hole symmetry. In addition, for the asymmetric Anderson model the correlation functions, <Sσ(0)><\vec S \cdot\vec \sigma (0)>,,and, and are computed.Comment: 10 pages, 10 figure

    Strain and field modulation in bilayer graphene band structure

    Full text link
    Using an external electric field, one can modulate the bandgap of Bernal stacked bilayer graphene by breaking A-~B symmetry. We analyze strain effects on the bilayer graphene using the extended Huckel theory and find that reduced interlayer distance results in higher bandgap modulation, as expected. Furthermore, above about 2.5 angstrom interlayer distance, the bandgap is direct, follows a convex relation to electric field and saturates to a value determined by the interlayer distance. However, below about 2.5 angstrom, the bandgap is indirect, the trend becomes concave and a threshold electric field is observed, which also depends on the stacking distance.Comment: 3 pages, 5 figures - v1 and v2 are the same, uploaded twice - v3, some typos fixed and a reference adde

    Nonvolatile memory with molecule-engineered tunneling barriers

    Full text link
    We report a novel field-sensitive tunneling barrier by embedding C60 in SiO2 for nonvolatile memory applications. C60 is a better choice than ultra-small nanocrystals due to its monodispersion. Moreover, C60 provides accessible energy levels to prompt resonant tunneling through SiO2 at high fields. However, this process is quenched at low fields due to HOMO-LUMO gap and large charging energy of C60. Furthermore, we demonstrate an improvement of more than an order of magnitude in retention to program/erase time ratio for a metal nanocrystal memory. This shows promise of engineering tunnel dielectrics by integrating molecules in the future hybrid molecular-silicon electronics.Comment: to appear in Applied Physics Letter

    Classical and Quantum Cosmology of Multigravity

    Get PDF
    Recently, a multigraviton theory on a simple closed circuit graph corresponding to the discretization of S1S^1 compactification of the Kaluza-Klein (KK) theory has been considered. In the present paper, we extend this theory to that on a general graph and study what modes of particles are included. Furthermore, we generalize it in a possible nonlinear theory based on the vierbein formalism and study classical and quantum cosmological solutions in the theory. We found that scale factors in a solution for this theory repeat acceleration and deceleration.Comment: 17 pages, 15 figures, RevTeX4.1, revised versio

    An Extended Huckel Theory based Atomistic Model for Graphene Nanoelectronics

    Full text link
    An atomistic model based on the spin-restricted extended Huckel theory (EHT) is presented for simulating electronic structure and I-V characteristics of graphene devices. The model is applied to zigzag and armchair graphene nano-ribbons (GNR) with and without hydrogen passivation, as well as for bilayer graphene. Further calculations are presented for electric fields in the nano-ribbon width direction and in the bilayer direction to show electronic structure modification. Finally, the EHT Hamiltonian and NEGF (Nonequilibrium Green's function) formalism are used for a paramagnetic zigzag GNR to show 2e2/h quantum conductance.Comment: 5 pages, 8 figure

    The thermal equation of state of FeTiO_3 ilmenite based on in situ X-ray diffraction at high pressures and temperatures

    Get PDF
    We present in situ measurements of the unit-cell volume of a natural terrestrial ilmenite (Jagersfontein mine, South Africa) and a synthetic reduced ilmenite (FeTiO_3) at simultaneous high pressure and high temperature up to 16 GPa and 1273 K. Unit-cell volumes were determined using energy-dispersive synchrotron X-ray diffraction in a multi-anvil press. Mössbauer analyses show that the synthetic sample contained insignificant amounts of Fe^(3+) both before and after the experiment. Results were fit to Birch-Murnaghan thermal equations of state, which reproduce the experimental data to within 0.5 and 0.7 GPa for the synthetic and natural samples, respectively. At ambient conditions, the unit-cell volume of the natural sample [V_0 = 314.75 ± 0.23 (1 ) Å^3] is significantly smaller than that of the synthetic sample [V_0 = 319.12 ± 0.26 Å^3]. The difference can be attributed to the presence of impurities and Fe^(3+) in the natural sample. The 1 bar isothermal bulk moduli K_(T0) for the reduced ilmenite is slightly larger than for the natural ilmenite (181 ± 7 and 165 ± 6 GPa, respectively), with pressure derivatives K_0' = 3 ± 1. Our results, combined with literature data, suggest that the unit-cell volume of reduced ilmenite is significantly larger than that of oxidized ilmenite, whereas their thermoelastic parameters are similar. Our data provide more appropriate input parameters for thermo-chemical models of lunar interior evolution, in which reduced ilmenite plays a critical role

    Plasma-Induced Frequency Chirp of Intense Femtosecond Lasers and Its Role in Shaping High-Order Harmonic Spectral Lines

    Get PDF
    We investigate the self-phase modulation of intense femtosecond laser pulses propagating in an ionizing gas and its effects on collective properties of high-order harmonics generated in the medium. Plasmas produced in the medium are shown to induce a positive frequency chirp on the leading edge of the propagating laser pulse, which subsequently drives high harmonics to become positively chirped. In certain parameter regimes, the plasma-induced positive chirp can help to generate sharply peaked high harmonics, by compensating for the dynamically-induced negative chirp that is caused by the steep intensity profile of intense short laser pulses.Comment: 5 pages, 5 figure

    Pump-tailored Alternative Bell State Generation in the First-Order Hermite-Gaussian basis

    Full text link
    We demonstrate entangled-state swapping, within the Hermite-Gaussian basis of first-order modes, directly from the process of spontaneous parametric down-conversion within a nonlinear crystal. The method works by explicitly tailoring the spatial structure of the pump photon such that it resembles the product of the desired entangled spatial modes exiting the crystal. Importantly, the result is an entangled state of balanced HG modes, which may be beneficial in applications that depend on symmetric accumulations of geometric phase through optics or in applications of quantum sensing and imaging with azimuthal sensitivity. Furthermore, the methods are readily adaptable to other spatial mode bases

    Appearance of Flat Bands and Edge States in Boron-Carbon-Nitride Nanoribbons

    Full text link
    Presence of flat bands and edge states at the Fermi level in graphene nanoribbons with zigzag edges is one of the most interesting and attracting properties of nanocarbon materials but it is believed that they are quite fragile states and disappear when B and N atoms are doped at around the edges. In this paper, we theoretically investigate electronic and magnetic properties of boron-carbon-nitride (BCN) nanoribbons with zigzag edges where the outermost C atoms on the edges are alternately replaced with B and N atoms using the first principles calculations. We show that BCN nanoribbons have the flat bands and edge states at the Fermi level in both H_2 rich and poor environments. The flat bands are similar to those at graphene nanoribbons with zigzag edges, but the distributions of charge and spin densities are different between them. A tight binding model and the Hubbard model analysis show that the difference in the distribution of charge and spin densities is caused by the different site energies of B and N atoms compared with C atoms.Comment: 5 pages; 3 figure
    corecore