3 research outputs found

    Carbonate stable isotope constraints on sources of arsenic contamination in Neogene tufas and travertines of Attica, Greece

    No full text
    We presented new C and O isotope data of rockforming calcite in terrestrial carbonate deposits from Neogene basins of Attica (Greece), coupled with standard mineralogical and bulk geochemical results. Whereas both isotope datasets [Ξ΄18O from βˆ’8.99 to βˆ’3.20‰(VPDB); Ξ΄13C from βˆ’8.17 to +1.40‰(VPDB)] could be interpreted in principle as indicative of a meteoric origin, the clear lack of a statistical correlation between them suggests diverse sources for the isotopic variation of the two elements. On the basis of broad correlations between lower carbon isotope data with increasing Fe and bulk organic carbon, we interpreted the light carbon isotope signatures and As enrichments as both derived mainly from a depositional process involving increased supply of metals and organic carbon to the original basins. Periodically augmented biological production and aerobic cycling of organic matter in the ambient lake waters, would have led to the precipitation of isotopically light calcite in concert with elevated fluxes of As-bearing iron oxy-hydroxide and organic matter to the initial terrestrial carbonate sediment. The terrestrial carbonate deposits of Attica therefore represented effective secondary storage reservoirs of elevated As from the adjacent mineralized hinterland; hence these and similar deposits in the region ought to be regarded as key geological candidates for anomalous supply of As to local soils, groundwater and related human activities

    Bio-Geochemical Processes: Insights from Fe-Mn Mineralization in the Aegean Sea (Greece)

    No full text
    In this study, we have compiled new and existing mineralogical and geochemical data on Fe-Mn mineralization from the Aegean region [Attica (Grammatiko, Legrena, and Varnavas), Evia and Milos islands], aiming to provide new insights on the genesis of Fe-Mn mineralization in that region and its potential environmental implications. A common feature of those deposits is the relatively low Cr, Co, V, Ni, Mo, and Cd content, whereas Ba, As, W, Cu, Pb, and Zn show remarkably variable values. The Mn-Fe deposits from Milos exhibit the highest tungsten content, while a positive trend between MnO and W, combined with a negative trend between MnO and Fe2O3 suggests the preference of W to Mn-minerals. The occurrence of bacterio-morphic Fe-Mn-oxides/hydroxides within Mn-Fe mineralizations in the studied region, indicates the important role of micro-organisms into redox reactions. Moreover, the presence of micro-organisms in the Fe-Mn-deposits, reflecting the presence of organic matter confirms a shallow marine environment for their deposition. A salient feature of the Varnavas and Milos Mn-Fe ores is the presence of sodium chloride coated fossilized micro-organisms, suggesting development from a solution containing relatively high Na and Cl concentrations. Furthermore, from an environmental point of view, consideration is given to the bioavailability of elements such as As, Pb, and W, related to the above-mentioned mineralizations. The high bio-accumulation factor for W (Wplant/Wsoil × 100) recorded in the Neogene sedimentary basins of Attica, related to the Grammatiko Fe-Mn mineralization, reflects the high W mobility under alkaline conditions and the potential environmental impact of similar deposits with elevated W content

    Bio-Geochemical Processes: Insights from Fe-Mn Mineralization in the Aegean Sea (Greece)

    No full text
    In this study, we have compiled new and existing mineralogical and geochemical data on Fe-Mn mineralization from the Aegean region [Attica (Grammatiko, Legrena, and Varnavas), Evia and Milos islands], aiming to provide new insights on the genesis of Fe-Mn mineralization in that region and its potential environmental implications. A common feature of those deposits is the relatively low Cr, Co, V, Ni, Mo, and Cd content, whereas Ba, As, W, Cu, Pb, and Zn show remarkably variable values. The Mn-Fe deposits from Milos exhibit the highest tungsten content, while a positive trend between MnO and W, combined with a negative trend between MnO and Fe2O3 suggests the preference of W to Mn-minerals. The occurrence of bacterio-morphic Fe-Mn-oxides/hydroxides within Mn-Fe mineralizations in the studied region, indicates the important role of micro-organisms into redox reactions. Moreover, the presence of micro-organisms in the Fe-Mn-deposits, reflecting the presence of organic matter confirms a shallow marine environment for their deposition. A salient feature of the Varnavas and Milos Mn-Fe ores is the presence of sodium chloride coated fossilized micro-organisms, suggesting development from a solution containing relatively high Na and Cl concentrations. Furthermore, from an environmental point of view, consideration is given to the bioavailability of elements such as As, Pb, and W, related to the above-mentioned mineralizations. The high bio-accumulation factor for W (Wplant/Wsoil Γ— 100) recorded in the Neogene sedimentary basins of Attica, related to the Grammatiko Fe-Mn mineralization, reflects the high W mobility under alkaline conditions and the potential environmental impact of similar deposits with elevated W content
    corecore