43 research outputs found
Universal features of the order-parameter fluctuations : reversible and irreversible aggregation
We discuss the universal scaling laws of order parameter fluctuations in any
system in which the second-order critical behaviour can be identified. These
scaling laws can be derived rigorously for equilibrium systems when combined
with the finite-size scaling analysis. The relation between order parameter,
criticality and scaling law of fluctuations has been established and the
connexion between the scaling function and the critical exponents has been
found. We give examples in out-of-equilibrium aggregation models such as the
Smoluchowski kinetic equations, or of at-equilibrium Ising and percolation
models.Comment: 19 pages, 10 figure
Nonlinear Spin Dynamics in Nuclear Magnets
A method is developed for solving nonlinear systems of differential, or
integrodifferential, equations with stochastic fields. The method makes it
possible to give an accurate solution for an interesting physical problem: What
are the peculiarities of nonlinear spin dynamics in nonequilibrium nuclear
magnets coupled with a resonator? Evolution equations for nuclear spins are
derived basing on a Hamiltonian with dipole interactions. The ensemble of spins
is coupled with a resonator electric circuit. Seven types of main relaxation
regimes are found: free induction, collective induction, free relaxation,
collective relaxation, weak superradiance, pure superradiance, and triggered
superradiance. The initial motion of spins can be originated by two reasons,
either by an imposed initial coherence or by local spin fluctuations due to
nonsecular dipole interactions. The relaxation regimes caused by the second
reason cannot be described by the Bloch equations. Numerical estimates show
good agreement with experiment.Comment: 1 file, 47 pages, LaTe
Factors Associated with Revision Surgery after Internal Fixation of Hip Fractures
Background: Femoral neck fractures are associated with high rates of revision surgery after management with internal fixation. Using data from the Fixation using Alternative Implants for the Treatment of Hip fractures (FAITH) trial evaluating methods of internal fixation in patients with femoral neck fractures, we investigated associations between baseline and surgical factors and the need for revision surgery to promote healing, relieve pain, treat infection or improve function over 24 months postsurgery. Additionally, we investigated factors associated with (1) hardware removal and (2) implant exchange from cancellous screws (CS) or sliding hip screw (SHS) to total hip arthroplasty, hemiarthroplasty, or another internal fixation device. Methods: We identified 15 potential factors a priori that may be associated with revision surgery, 7 with hardware removal, and 14 with implant exchange. We used multivariable Cox proportional hazards analyses in our investigation. Results: Factors associated with increased risk of revision surgery included: female sex, [hazard ratio (HR) 1.79, 95% confidence interval (CI) 1.25-2.50; P = 0.001], higher body mass index (fo
Revision of a method for the determination of high blood glucose values, based on the Hagedorn and Jensen technique
An extension of the Hagedorn-Jensen method for handling blood samples with high glucose values is criticized. This modification, which is frequently used—at least in The Netherlands—consists of the addition of a second quantity of ferricyanide reagent to the test, after one has observed, by the decolorization of the fluid, that the first quantity was too small. It is shown that current descriptions of this procedure are insufficiently detailed, as they do not give the exact time for the second addition. If one does not give attention to this point, the results found may be grossly incorrect (up to 30% for a real value of 1000 mg/100 ml). Blood glucose values of diabetic patients in coma, formerly obtained by this method, must be regarded therefore with suspicion. While retaining the essentials of the method, several improvements are suggested
Principles and practice of lipidomics
The technical advances in mass spectrometry, particularly the development of (ultra)-high-resolution/mass accuracy measurement capabilities in combination with refinement of soft ionization techniques, have increased the application and success of lipidomics to answer biological questions in relation to lipid metabolism. Together with other omics technologies, lipidomics has become an important tool to practice systems biology as lipids comprise a very significant part of the metabolome and play pleiotropic roles in cellular functions. As an increasing number of disorders are linked to lipid metabolism, lipidomics is used to search for biomarkers, understand disease mechanism and follow the efficacy of therapeutic options. This review provides a first introduction to the major methodological strategies currently used for mass spectrometry-based lipidomics and associated data pre-processing and analysis