3 research outputs found

    In-Situ Dual-Port Polarization Contrast Imaging of Faraday Rotation in a High Optical Depth Ultracold 87Rb Atomic Ensemble

    Full text link
    We study the effects of high optical depth and density on the performance of a light-atom quantum interface. An in-situ imaging method, a dual-port polarization contrast technique, is presented. This technique is able to compensate for image distortions due to refraction. We propose our imaging method as a tool to characterize atomic ensembles for high capacity spatial multimode quantum memories. Ultracold dense inhomogeneous Rubidium samples are imaged and we find a resonant optical depth as high as 680 on the D1 line. The measurements are compared with light-atom interaction models based on Maxwell-Bloch equations. We find that an independent atom assumption is insufficient to explain our data and present corrections due to resonant dipole-dipole interactions

    Abstracts of papers presented at the 14th conference of the Weed Science Society of Israel Abstracts of papers presented at the international conference on controlled atmosphere and fumigation (CAF) in stored products Abstracts of papers presented at the joint international conference of FAOPMA — CEPA on pest control in the 21st century Abstracts of papers presented at the 2nd international Agro-Ecology Symposium on integrated pest management: from the drawing board to the market

    No full text
    corecore