20 research outputs found

    Perspective: A Definition for Whole-Grain Food Products—Recommendations from the Healthgrain Forum

    Get PDF
    Whole grains are a key component of a healthy diet, and enabling consumers to easily choose foods with a high whole-grain content is an important step for better prevention of chronic disease. Several definitions exist for whole-grain foods, yet these do not account for the diversity of food products that contain cereals. With the goal of creating a relatively simple whole-grain food definition that aligns with whole-grain intake recommendations and can be applied across all product categories, the Healthgrain Forum, a not-for-profit consortium of academics and industry working with cereal foods, established a working group to gather input from academics and industry to develop guidance on labeling the whole-grain content of foods. The Healthgrain Forum recommends that a food may be labeled as “whole grain” if it contains $30% whole-grain ingredients in the overall product and contains more whole grain than refined grain ingredients, both on a dry-weight basis. For the purposes of calculation, added bran and germ are not considered refined-grain ingredients. Additional recommendations are also made on labeling whole-grain content in mixed-cereal foods, such as pizza and ready meals, and a need to meet healthy nutrition criteria. This definition allows easy comparison across product categories because it is based on dry weight and strongly encourages a move from generic whole-grain labels to reporting the actual percentage of whole grain in a product. Although this definition is for guidance only, we hope that it will encourage more countries to adopt regulation around the labeling of whole grains and stimulate greater awareness and consumption of whole grains in the general population. Adv Nutr 2017;8:525–31

    GnRH-deficient phenotypes in humans and mice with heterozygous variants in KISS1/Kiss1.

    No full text
    CONTEXT: KISS1 is a candidate gene for GnRH deficiency. OBJECTIVE: Our objective was to identify deleterious mutations in KISS1. PATIENTS AND METHODS: DNA sequencing and assessment of the effects of rare sequence variants (RSV) were conducted in 1025 probands with GnRH-deficient conditions. RESULTS: Fifteen probands harbored 10 heterozygous RSV in KISS1 seen in less than 1% of control subjects. Of the variants that reside within the mature kisspeptin peptide, p.F117L (but not p.S77I, p.Q82K, p.H90D, or p.P110T) reduces inositol phosphate generation. Of the variants that lie within the coding region but outside the mature peptide, p.G35S and p.C53R (but not p.A129V) are predicted in silico to be deleterious. Of the variants that lie outside the coding region, one (g.1-3659C→T) impairs transcription in vitro, and another (c.1-7C→T) lies within the consensus Kozak sequence. Of five probands tested, four had abnormal baseline LH pulse patterns. In mice, testosterone decreases with heterozygous loss of Kiss1 and Kiss1r alleles (wild-type, 274 ± 99, to double heterozygotes, 69 ± 16 ng/dl; r(2) = 0.13; P = 0.03). Kiss1/Kiss1r double-heterozygote males have shorter anogenital distances (13.0 ± 0.2 vs. 15.6 ± 0.2 mm at P34, P < 0.001), females have longer estrous cycles (7.4 ± 0.2 vs. 5.6 ± 0.2 d, P < 0.01), and mating pairs have decreased litter frequency (0.59 ± 0.09 vs. 0.71 ± 0.06 litters/month, P < 0.04) and size (3.5 ± 0.2 vs. 5.4 ± 0.3 pups/litter, P < 0.001) compared with wild-type mice. CONCLUSIONS: Deleterious, heterozygous RSV in KISS1 exist at a low frequency in GnRH-deficient patients as well as in the general population in presumably normal individuals. As in Kiss1(+/−)/Kiss1r(+/−) mice, heterozygous KISS1 variants in humans may work with other genetic and/or environmental factors to cause abnormal reproductive function
    corecore