29 research outputs found
The Psychophysiology of Novelty Processing: Do Brain Responses to Deviance Predict Recall, Recognition and Response Time?
Events that violate expectations are biologically significant and accordingly elicit various physiological responses. We investigated the functional relationship between three of these responses: the P300, the Novelty P3 and the pupil dilation response (PDR), with a particular focus on their co-variance with reaction time and measures of subsequent memory. In a modified Novelty P3 oddball paradigm, participants semantically categorized a sequence of stimuli including (1) words of a frequent category, (2) words of an infrequent category (14% of the trials) and (3) pictures of the frequent category (14% of the trials). The Novelty P3 oddball task was followed by a recall- and a recognition test. Larger amplitudes of the P300, identified by a spatial principal component analysis (PCA), were associated with enhanced subsequent recall as well as faster reaction times during the recognition test, suggesting a close relationship between the cognitive process indexed by the P300 and memory encoding. The PDR was larger for infrequents (which required a response switch) than both frequents and pictures (which did not require a switch). Furthermore, its latency was correlated with reaction time on the same trial and with reaction time on the immediately following trial. There was only weak evidence for a correlation with subsequent memory, suggesting that the cognitive process associated with the PDR might be a direct link in the stimulus-response stream. Larger Novelty P3 amplitudes were associated with both faster reaction times on the same trial and stronger memory traces, suggesting that its amplitude might index resource allocation. These findings suggest that each of the physiological responses carries a distinct functional significance in detecting, processing, or responding to novel events, and we discuss the findings in the light of the prevalent theories of the functional significance of each response
The Effects of Physical Distinctiveness and Word Commonness on Brain Waves and Subsequent Memory: An ERP Study
Words that deviate in their physical characteristics from their surrounding lead to enhanced recall memory, a pattern known as the Von Restorff effect. Furthermore, common (high frequency; HF) words are more likely to be recalled than uncommon (low frequency; LF) words when they occur in pure lists, while this pattern is reversed in mixed lists of both HF and LF words. This study investigated whether the Von Restorff effect and the reversal of word frequency effects in mixed lists, which may both be explained by enhanced perceived distinctiveness, are associated with common underlying brain processes. Event-related potentials (ERPs) were recorded while participants studied and subsequently recalled 70 word lists using rote memorization strategies. The three list types included (1) 14 regular-sized and one larger word, (2) 14 HF words and one LF word, or (3) 14 LF words and one HF word. The behavioral data showed a typical Von Restorff effect, a word frequency effect, as well as a reversal of the word frequency effect for LF words isolated in HF word lists ( LF isolates ). Larger words and LF isolates elicited a P300, an ERP component associated with subjective distinctiveness, whose amplitude was correlated with subsequent recall for both word types. This indicates that LF isolates were perceived as distinctive, and that this perceived distinctiveness aided subsequent recall in a similar way as for physically deviant words. Both larger words and LF isolates also elicited a left-lateralized slow wave which was larger for subsequently recalled than for not recalled words. This ERP component supposedly reflects item-to-item elaborative processes, indicating that such elaborative processes are enhanced when LF words occur in HF word list. HF words isolated in lists of LF words did not elicit comparable ERP subsequent memory effects. Rather, for these HF isolates , the N400 was negatively correlated with subsequent recall, an ERP component that reflects semantic integration processes. We conclude that the reversal of the word frequency effect in mixed lists can be explained by a combination of enhanced subjective distinctiveness and enhanced inter-item elaborative processes for LF words that occur in lists of HF words
The Effects of Physical Distinctiveness and Word Commonness on Brain Waves and Subsequent Memory: An ERP Study
Words that deviate in their physical characteristics from their surrounding lead to enhanced recall memory, a pattern known as the Von Restorff effect. Furthermore, common (high frequency; HF) words are more likely to be recalled than uncommon (low frequency; LF) words when they occur in pure lists, while this pattern is reversed in mixed lists of both HF and LF words. This study investigated whether the Von Restorff effect and the reversal of word frequency effects in mixed lists, which may both be explained by enhanced perceived distinctiveness, are associated with common underlying brain processes. Event-related potentials (ERPs) were recorded while participants studied and subsequently recalled 70 word lists using rote memorization strategies. The three list types included (1) 14 regular-sized and one larger word, (2) 14 HF words and one LF word, or (3) 14 LF words and one HF word. The behavioral data showed a typical Von Restorff effect, a word frequency effect, as well as a reversal of the word frequency effect for LF words isolated in HF word lists ( LF isolates ). Larger words and LF isolates elicited a P300, an ERP component associated with subjective distinctiveness, whose amplitude was correlated with subsequent recall for both word types. This indicates that LF isolates were perceived as distinctive, and that this perceived distinctiveness aided subsequent recall in a similar way as for physically deviant words. Both larger words and LF isolates also elicited a left-lateralized slow wave which was larger for subsequently recalled than for not recalled words. This ERP component supposedly reflects item-to-item elaborative processes, indicating that such elaborative processes are enhanced when LF words occur in HF word list. HF words isolated in lists of LF words did not elicit comparable ERP subsequent memory effects. Rather, for these HF isolates , the N400 was negatively correlated with subsequent recall, an ERP component that reflects semantic integration processes. We conclude that the reversal of the word frequency effect in mixed lists can be explained by a combination of enhanced subjective distinctiveness and enhanced inter-item elaborative processes for LF words that occur in lists of HF words
Psychometric properties of the oddball P300 in older adults: The role of stimulus sequence effects
Datase
Subjective cognitive decline in healthy older adults is associated with altered processing of negative versus positive feedback in a probabilistic learning task
Data sheets for a manuscript accepted for publication at Frontiers in Psychology - Psychology of Aging:
Kamp, S.M., Endemann, R., Knopf, L., & Ferdinand, N. K. (accepted)
Subjective cognitive decline in healthy older adults is associated with altered processing of negative versus positive feedback in a probabilistic learning task