370 research outputs found

    Adversarial training and dilated convolutions for brain MRI segmentation

    Full text link
    Convolutional neural networks (CNNs) have been applied to various automatic image segmentation tasks in medical image analysis, including brain MRI segmentation. Generative adversarial networks have recently gained popularity because of their power in generating images that are difficult to distinguish from real images. In this study we use an adversarial training approach to improve CNN-based brain MRI segmentation. To this end, we include an additional loss function that motivates the network to generate segmentations that are difficult to distinguish from manual segmentations. During training, this loss function is optimised together with the conventional average per-voxel cross entropy loss. The results show improved segmentation performance using this adversarial training procedure for segmentation of two different sets of images and using two different network architectures, both visually and in terms of Dice coefficients.Comment: MICCAI 2017 Workshop on Deep Learning in Medical Image Analysi

    Advancing efficiency and robustness of neural networks for imaging

    Get PDF
    Enabling machines to see and analyze the world is a longstanding research objective. Advances in computer vision have the potential of influencing many aspects of our lives as they can enable machines to tackle a variety of tasks. Great progress in computer vision has been made, catalyzed by recent progress in machine learning and especially the breakthroughs achieved by deep artificial neural networks. Goal of this work is to alleviate limitations of deep neural networks that hinder their large-scale adoption for real-world applications. To this end, it investigates methodologies for constructing and training deep neural networks with low computational requirements. Moreover, it explores strategies for achieving robust performance on unseen data. Of particular interest is the application of segmenting volumetric medical scans because of the technical challenges it imposes, as well as its clinical importance. The developed methodologies are generic and of relevance to a broader computer vision and machine learning audience. More specifically, this work introduces an efficient 3D convolutional neural network architecture, which achieves high performance for segmentation of volumetric medical images, an application previously hindered by high computational requirements of 3D networks. It then investigates sensitivity of network performance on hyper-parameter configuration, which we interpret as overfitting the model configuration to the data available during development. It is shown that ensembling a set of models with diverse configurations mitigates this and improves generalization. The thesis then explores how to utilize unlabelled data for learning representations that generalize better. It investigates domain adaptation and introduces an architecture for adversarial networks tailored for adaptation of segmentation networks. Finally, a novel semi-supervised learning method is proposed that introduces a graph in the latent space of a neural network to capture relations between labelled and unlabelled samples. It then regularizes the embedding to form a compact cluster per class, which improves generalization.Open Acces

    On the use of Mahalanobis distance for out-of-distribution detection with neural networks for medical imaging

    Full text link
    Implementing neural networks for clinical use in medical applications necessitates the ability for the network to detect when input data differs significantly from the training data, with the aim of preventing unreliable predictions. The community has developed several methods for out-of-distribution (OOD) detection, within which distance-based approaches - such as Mahalanobis distance - have shown potential. This paper challenges the prevailing community understanding that there is an optimal layer, or combination of layers, of a neural network for applying Mahalanobis distance for detection of any OOD pattern. Using synthetic artefacts to emulate OOD patterns, this paper shows the optimum layer to apply Mahalanobis distance changes with the type of OOD pattern, showing there is no one-fits-all solution. This paper also shows that separating this OOD detector into multiple detectors at different depths of the network can enhance the robustness for detecting different OOD patterns. These insights were validated on real-world OOD tasks, training models on CheXpert chest X-rays with no support devices, then using scans with unseen pacemakers (we manually labelled 50% of CheXpert for this research) and unseen sex as OOD cases. The results inform best-practices for the use of Mahalanobis distance for OOD detection. The manually annotated pacemaker labels and the project's code are available at: https://github.com/HarryAnthony/Mahalanobis-OOD-detection.Comment: Accepted for the Uncertainty for Safe Utilization of Machine Learning in Medical Imaging (UNSURE 2023) workshop at the MICCAI 202

    Semi-Supervised Deep Learning for Fully Convolutional Networks

    Full text link
    Deep learning usually requires large amounts of labeled training data, but annotating data is costly and tedious. The framework of semi-supervised learning provides the means to use both labeled data and arbitrary amounts of unlabeled data for training. Recently, semi-supervised deep learning has been intensively studied for standard CNN architectures. However, Fully Convolutional Networks (FCNs) set the state-of-the-art for many image segmentation tasks. To the best of our knowledge, there is no existing semi-supervised learning method for such FCNs yet. We lift the concept of auxiliary manifold embedding for semi-supervised learning to FCNs with the help of Random Feature Embedding. In our experiments on the challenging task of MS Lesion Segmentation, we leverage the proposed framework for the purpose of domain adaptation and report substantial improvements over the baseline model.Comment: 9 pages, 6 figure

    Automatic Brain Tumor Segmentation using Convolutional Neural Networks with Test-Time Augmentation

    Get PDF
    Automatic brain tumor segmentation plays an important role for diagnosis, surgical planning and treatment assessment of brain tumors. Deep convolutional neural networks (CNNs) have been widely used for this task. Due to the relatively small data set for training, data augmentation at training time has been commonly used for better performance of CNNs. Recent works also demonstrated the usefulness of using augmentation at test time, in addition to training time, for achieving more robust predictions. We investigate how test-time augmentation can improve CNNs' performance for brain tumor segmentation. We used different underpinning network structures and augmented the image by 3D rotation, flipping, scaling and adding random noise at both training and test time. Experiments with BraTS 2018 training and validation set show that test-time augmentation helps to improve the brain tumor segmentation accuracy and obtain uncertainty estimation of the segmentation results.Comment: 12 pages, 3 figures, MICCAI BrainLes 201

    Towards continual learning in medical imaging

    Get PDF
    This work investigates continual learning of two segmentation tasks in brain MRI with neural networks. To explore in this context the capabilities of current methods for countering catastrophic forgetting of the first task when a new one is learned, we investigate elastic weight consolidation, a recently proposed method based on Fisher information, originally evaluated on reinforcement learning of Atari games. We use it to sequentially learn segmentation of normal brain structures and then segmentation of white matter lesions. Our findings show this recent method reduces catastrophic forgetting, while large room for improvement exists in these challenging settings for continual learning

    A deep level set method for image segmentation

    Full text link
    This paper proposes a novel image segmentation approachthat integrates fully convolutional networks (FCNs) with a level setmodel. Compared with a FCN, the integrated method can incorporatesmoothing and prior information to achieve an accurate segmentation.Furthermore, different than using the level set model as a post-processingtool, we integrate it into the training phase to fine-tune the FCN. Thisallows the use of unlabeled data during training in a semi-supervisedsetting. Using two types of medical imaging data (liver CT and left ven-tricle MRI data), we show that the integrated method achieves goodperformance even when little training data is available, outperformingthe FCN or the level set model alone
    corecore