2 research outputs found

    What can the activation energy tell about the energetics at grain boundaries in polycrystalline organic films?

    Full text link
    Charge-carrier transport at the semiconductor-gate dielectric interface in organic field-effect transistors is critically dependent on the degree of disorder in the typically semi-crystalline semiconductor layer. Charge trapping can occur at the interface as well as in the current-carrying semiconductor layer itself. A detailed and systematic understanding of the role of grain boundaries between crystallites and how to avoid their potentially detrimental effects is still an important focus of research in the organic electronics community. A typical macroscopic measurement technique to extract information about the energetics of the grain boundaries is an activation energy measurement. Here, we compare detailed experiments on the energetic properties of monolayer thin films implemented in organic field-effect transistors, having controlled numbers of grain boundaries within the channel region to kinetic Monte-Carlo simulations of charge-carrier transport to elucidate the influence of grain boundaries on the extracted activation energies. Two important findings are: 1) whereas the energy at the grain boundary does not change with the number of grain boundaries in a thin film, both the measured and simulated activation energy increases with the number of grain boundaries. 2) In simulations where both energy barriers and valleys are present at the grain boundaries there is no systematic relation between the number of grain boundaries and extracted activation energies. We conclude, that a macroscopic measurement of the activation energy can serve as general quality indicator of the thin film, but does not allow microscopic conclusions about the energy landscape of the thin film

    Evaluation of PD-L1 Expression and HPV Genotyping in Anal Squamous Cell Carcinoma

    No full text
    Anal squamous cell carcinoma (SCC) is a rare cancer with increasing incidence. Infection with high-risk human papillomavirus (HPV) subtypes is the major cause for its development. We retrospectively analyzed tumor samples from 54 anal SCC patients for infection with a panel of 32 HPV subtypes in a PCR-based approach, determined the PD-L1 expression status, and correlated the findings with the clinical data and the survival of the patients. Forty-two patients (77.8%) were HPV-positive and harbored at least one carcinogenic HPV subtype. HPV16 was the most frequently detected (n = 39, 72.2%). Four patients were infected with multiple HPV subtypes. HPV infection was significantly more often detected in female than in male patients (90.3% vs. 60.9%, p = 0.018). Patients with PD-L1 positive tumors showed a significantly better median overall survival (OS) compared with patients with PD-L1 negative tumors (69.3 vs. 28.3 months, p = 0.006). The median OS was significantly different among the distinct tumor stages (p = 0.029). Sex, grade of differentiation, and HPV infection status did not influence the median OS. Furthermore, HPV infection status and PD-L1 expression were not correlated. A multivariate Cox regression analysis revealed that PD-L1 expression status was an independent prognostic marker for survival (p = 0.012)
    corecore