289 research outputs found
DISC1 Pathway in Brain Development: Exploring Therapeutic Targets for Major Psychiatric Disorders
Genetic risk factors for major psychiatric disorders play key roles in neurodevelopment. Thus, exploring the molecular pathways of risk genes is important not only for understanding the molecular mechanisms underlying brain development, but also to decipher how genetic disturbances affect brain maturation and functioning relevant to major mental illnesses. During the last decade, there has been significant progress in determining the mechanisms whereby risk genes impact brain development. Nonetheless, given that the majority of psychiatric disorders have etiological complexities encompassing multiple risk genes and environmental factors, the biological mechanisms of these diseases remain poorly understood. How can we move forward to our research for discovery of the biological markers and novel therapeutic targets for major mental disorders? Here we review recent progress in the neurobiology of disrupted in schizophrenia 1 (DISC1), a major risk gene for major mental disorders, with a particular focus on its roles in cerebral cortex development. Convergent findings implicate DISC1 as part of a large, multi-step pathway implicated in various cellular processes and signal transduction. We discuss links between the DISC1 pathway and environmental factors, such as immune/inflammatory responses, which may suggest novel therapeutic targets. Existing treatments for major mental disorders are hampered by a limited number of pharmacological targets. Consequently, elucidation of the DISC1 pathway, and its association with neuropsychiatric disorders, may offer hope for novel treatment interventions
Report on Disaster Medical Operations with Acupuncture/Massage Therapy After the Great East Japan Earthquake
The Great East Japan Earthquake inflicted immense damage over a wide area of eastern Japan with the consequent tsunami. Department of Traditional Asian Medicine, Tohoku University, started providing medical assistance to the disaster-stricken regions mainly employing traditional Asian therapies
SUMOylation of DISC1: a potential role in neural progenitor proliferation in the developing cortex
DISC1 is a multifunctional, intracellular scaffold protein. At the cellular level, DISC1 plays a pivotal role in neural progenitor proliferation, migration, and synaptic maturation. Perturbation of the biological pathways involving DISC1 is known to lead to behavioral changes in rodents, which supports a clinical report of a Scottish pedigree in which the majority of family members with disruption of the DISC1 gene manifest depression, schizophrenia, and related mental conditions. The discrepancy between modest evidence in genetics and strong biological support for the role of DISC1 in mental conditions suggests a working hypothesis that regulation of DISC1 at the protein level, such as posttranslational modification, may play a role in the pathology of mental conditions. In this study, we report on the SUMOylation of DISC1. This posttranslational modification occurs on lysine residues where the small ubiquitin-related modifier (SUMO) and its homologs are conjugated to a large number of cellular proteins, which in turn regulates their subcellular distribution and protein stability. By using in silico, biochemical, and cell-biological approaches, we now demonstrate that human DISC1 is SUMOylated at one specific lysine 643 (K643). We also show that this residue is crucial for proper neural progenitor proliferation in the developing cortex
In Vitro Studies to Define the Cell-Surface and Intracellular Targets of Polyarginine-Conjugated Sodium Borocaptate as a Potential Delivery Agent for Boron Neutron Capture Therapy
Boron neutron capture therapy (BNCT) requires pharmaceutical innovations and molecular-based evidence of effectiveness to become a standard cancer therapeutic in the future. Recently, in Japan, 4-borono-L-phenylalanine (BPA) was approved as a boron agent for BNCT against head and neck (H&N) cancers. H&N cancer appears to be a suitable target for BPA-BNCT, because the expression levels of L-type amino acid transporter 1 (LAT1), one of the amino acid transporters responsible for BPA uptake, are elevated in most cases of H&N cancer. However, in other types of cancer including malignant brain tumors, LAT1 is not always highly expressed. To expand the possibility of BNCT for these cases, we previously developed poly-arginine peptide (polyR)-conjugated mercaptoundecahydrododecaborate (BSH). PolyR confers the cell membrane permeability and tumor selectivity of BSH. However, the molecular determinants for the properties are not fully understood. In this present study, we have identified the cluster of differentiation 44 (CD44) protein and translational machinery proteins as a major cell surface target and intracellular targets of BSH-polyR, respectively. CD44, also known as a stem cell-associated maker in various types of cancer, is required for the cellular uptake of polyR-conjugated molecules. We showed that BSH-polyR was predominantly delivered to a CD44(High) cell population of cancer cells. Once delivered, BSH-polyR interacted with the translational machinery components, including the initiation factors, termination factors, and poly(A)-biding protein (PABP). As a proof of principle, we performed BSH-polyR-based BNCT against glioma stem-like cells and revealed that BSH-polyR successfully induced BNCT-dependent cell death specifically in CD44(High) cells. Bioinformatics analysis indicated that BSH-polyR would be suitable for certain types of malignant tumors. Our results shed light on the biochemical properties of BSH-polyR, which may further contribute to the therapeutic optimization of BSH-BNCT in the future
Effect of febuxostat on left ventricular diastolic function in patients with asymptomatic hyperuricemia : a sub analysis of the PRIZE Study
Hyperuricemia is related to an increased risk of cardiovascular events from a meta-analysis and antihyperuricemia agents may influence to cardiac function. We evaluated the effect of febuxostat on echocardiographic parameters of diastolic function in patients with asymptomatic hyperuricemia as a prespecified endpoint in the subanalysis of the PRIZE study. Patients in the PRIZE study were assigned randomly to either add-on febuxostat treatment group or control group with only appropriate lifestyle modification. Of the 514 patients in the overall study, 65 patients (31 in the febuxostat group and 34 in the control group) who had complete follow-up echocardiographic data of the ratio of peak early diastolic transmitral flow velocity (E) to peak early diastolic mitral annular velocity (e′) at baseline and after 12 and 24 months were included. The primary endpoint was a comparison of the changes in the E/e′ between the two groups from baseline to 24 months. Interestingly, e′ was slightly decreased in the control group compared with in the febuxostat group (treatment p = 0.068, time, p = 0.337, treatment × Time, p = 0.217). As a result, there were significant increases in E/e′ (treatment p = 0.045, time, p = 0.177, treatment × time, p = 0.137) after 24 months in the control group compared with the febuxostat group. There was no significant difference in the serum levels of N-terminal-pro brain natriuretic peptide and high-sensitive troponin I between the two groups during the study period. In conclusions, additional febuxostat treatment in patients with asymptomatic hyperuricemia for 24 months might have a potential of preventable effects on the impaired diastolic dysfunction
Development and External Validation of a Nomogram Predicting the Probability of Significant Gleason Sum Upgrading among Japanese Patients with Localized Prostate Cancer
Objective. The aim of this study is to develop a prognostic model capable of predicting the probability of significant upgrading among Japanese patients.
Methods. The study cohort comprised 508 men treated with RP, with available prostate-specific antigen levels, biopsy, and RP Gleason sum values. Clinical and pathological data from 258 patients were obtained from another Japanese institution for validation.
Results. Significant Gleason sum upgrading was recorded in 92 patients (18.1%) at RP. The accuracy of the nomogram predicting the probability of significant Gleason sum upgrading between biopsy and RP specimens was 88.9%. Overall AUC was 0.872 when applied to the validation data set. Nomogram predictions of significant upgrading were within 7.5% of an ideal nomogram.
Conclusions. Nearly one-fifth of Japanese patients with prostate cancer will be significantly upgraded. Our nomogram seems to provide considerably accurate predictions regardless of minor variations in pathological assessment when applied to Japanese patient populations
Differentiated glioblastoma cells accelerate tumor progression by shaping the tumor microenvironment via CCN1-mediated macrophage infiltration
Glioblastoma (GBM) is the most lethal primary brain tumor characterized by significant cellular heterogeneity, namely tumor cells, including GBM stem-like cells (GSCs) and differentiated GBM cells (DGCs), and non-tumor cells such as endothelial cells, vascular pericytes, macrophages, and other types of immune cells. GSCs are essential to drive tumor progression, whereas the biological roles of DGCs are largely unknown. In this study, we focused on the roles of DGCs in the tumor microenvironment. To this end, we extracted DGC-specific signature genes from transcriptomic profiles of matched pairs of in vitro GSC and DGC models. By evaluating the DGC signature using single cell data, we confirmed the presence of cell subpopulations emulated by in vitro culture models within a primary tumor. The DGC signature was correlated with the mesenchymal subtype and a poor prognosis in large GBM cohorts such as The Cancer Genome Atlas and Ivy Glioblastoma Atlas Project. In silico signaling pathway analysis suggested a role of DGCs in macrophage infiltration. Consistent with in silico findings, in vitro DGC models promoted macrophage migration. In vivo, coimplantation of DGCs and GSCs reduced the survival of tumor xenograft-bearing mice and increased macrophage infiltration into tumor tissue compared with transplantation of GSCs alone. DGCs exhibited a significant increase in YAP/TAZ/TEAD activity compared with GSCs. CCN1, a transcriptional target of YAP/TAZ, was selected from the DGC signature as a candidate secreted protein involved in macrophage recruitment. In fact, CCN1 was secreted abundantly from DGCs, but not GSCs. DGCs promoted macrophage migration in vitro and macrophage infiltration into tumor tissue in vivo through secretion of CCN1. Collectively, these results demonstrate that DGCs contribute to GSC-dependent tumor progression by shaping a mesenchymal microenvironment via CCN1-mediated macrophage infiltration. This study provides new insight into the complex GBM microenvironment consisting of heterogeneous cells
Impact of glycemic control with sitagliptin on the 2‑year progression of arterial stiffness : a sub‑analysis of the PROLOGUE study
Background: No conclusive evidence has been obtained yet on the significance of the effects of dipeptidyl peptidase-4 (DPP-4 inhibitor) treatment on the arterial stiffness in clinical settings. In addition, the effects of good glycemic control on the arterial stiffness have also not been clarified yet. As a sub-analysis of the PROLOGUE study, we examined the effect of a DPP-4 inhibitor (sitagliptin) on the 2-year progression of the arterial stiffness and also to determine the effect of good glycemic control on the rate of progression of the arterial stiffness.
Methods: In the PROLOGUE study, the study participants were either allocated to add-on sitagliptin treatment or to continued treatment with conventional anti-diabetic agents. Among the 463 participants of the PROLOGUE study, we succeeded in measuring the brachial-ankle pulse wave velocity (baPWV) at least two times during the 2-year study period in 96 subjects.
Results: The changes in the baPWV during the study period were similar between the both groups (i.e., with/without staglipitin), overall. On the other hand, when the study subjects were divided into two groups according to the glycemic control status during the study period {good glycemic control group (GC) = hemoglobin (Hb)A1c <7.0 at both 12 and 24 months after the treatment randomization; poor glycemic control group (PC) = HbA1c ≥7.0 at either 12 months, 24 months, or both}, the 2-year increase of the baPWV was marginally significantly larger in the PC group (144 ± 235 cm/s) as compared to that the GC group (−10 ± 282 cm/s) (p = 0.036).
Conclusion: While the present study could not confirm the beneficial effect of sitagliptin per se on the arterial stiffness, the results suggested that good glycemic control appears to be beneficial for delaying the annual progression of the arterial stiffness
Effect of sitagliptin on the echocardiographic parameters of left ventricular diastolic function in patients with type 2 diabetes : a subgroup analysis of the PROLOGUE study
Background: Diabetes is associated closely with an increased risk of cardiovascular events, including diastolic dysfunction and heart failure that leads to a shortening of life expectancy. It is therefore extremely valuable to evaluate the impact of antidiabetic agents on cardiac function. However, the influence of dipeptidyl peptidase 4 inhibitors on cardiac function is controversial and a major matter of clinical concern. We therefore evaluated the effect of sitagliptin on echocardiographic parameters of diastolic function in patients with type 2 diabetes as a sub-analysis of the PROLOGUE study.
Methods: Patients in the PROLOGUE study were assigned randomly to either add-on sitagliptin treatment or conventional antidiabetic treatment. Of the 463 patients in the overall study, 115 patients (55 in the sitagliptin group and 60 in the conventional group) who had complete echocardiographic data of the ratio of peak early diastolic transmitral flow velocity (E) to peak early diastolic mitral annular velocity (e′) at baseline and after 12 and 24 months were included in this study. The primary endpoint of this post hoc sub-analysis was a comparison of the changes in the ratio of E to e′ (E/e′) between the two groups from baseline to 24 months.
Results: The baseline-adjusted change in E/e′ during 24 months was significantly lower in the sitagliptin group than in the conventional group (−0.18 ± 0.55 vs. 1.91 ± 0.53, p = 0.008), irrespective of a higher E/e′ value at baseline in the sitagliptin group. In analysis of covariance, sitagliptin treatment was significantly associated with change in E/e′ over 24 months (β = −9.959, p = 0.001), independent of other clinical variables at baseline such as blood pressure, HbA1c, and medications for diabetes. Changes in other clinical variables including blood pressure and glycemic parameters, and echocardiographic parameters, such as cardiac structure and systolic function, were comparable between the two groups. There was also no significant difference in the serum levels of N-terminal-pro brain natriuretic peptide and high-sensitive C-reactive protein between the two groups during the study period.
Conclusions: Adding sitagliptin to conventional antidiabetic regimens in patients with T2DM for 24 months attenuated the annual exacerbation in the echocardiographic parameter of diastolic dysfunction (E/e′) independent of other clinical variables such as blood pressure and glycemic control
- …