92 research outputs found
An angle-resolved photoemission spectral function analysis of the electron doped cuprate Nd_1.85Ce_0.15CuO_4
Using methods made possible by recent advances in photoemission technology,
we perform an indepth line-shape analysis of the angle-resolved photoemission
spectra of the electron doped (n-type) cuprate superconductor
Nd_1.85Ce_0.15CuO_4. Unlike for the p-type materials, we only observe weak mass
renormalizations near 50-70 meV. This may be indicative of smaller
electron-phonon coupling or due to the masking effects of other interactions
that make the electron-phonon coupling harder to detect. This latter scenario
may suggest limitations of the spectral function analysis in extracting
electronic self-energies when some of the interactions are highly momentum
dependent.Comment: 8 pages, 5 figure
Effect of an Electron-phonon Interaction on the One-electron Spectral Weight of a d-wave Superconductor
We analyze the effects of an electron-phonon interaction on the one-electron
spectral weight A(k,omega) of a d_{x^2-y^2} superconductor. We study the case
of an Einstein phonon mode with various momentum-dependent electron-phonon
couplings and compare the structure produced in A(k,omega) with that obtained
from coupling to the magnetic pi-resonant mode. We find that if the strength of
the interactions are adjusted to give the same renormalization at the nodal
point, the differences in A(k,omega) are generally small but possibly
observable near k=(pi,0).Comment: 10 pages, 14 figures (color versions of Figs. 2,4,10,11,12 available
upon request
Flux Phase as a Dynamic Jahn-Teller Phase: Berryonic Matter in the Cuprates?
There is considerable evidence for some form of charge ordering on the
hole-doped stripes in the cuprates, mainly associated with the low-temperature
tetragonal phase, but with some evidence for either charge density waves or a
flux phase, which is a form of dynamic charge-density wave. These three states
form a pseudospin triplet, demonstrating a close connection with the E X e
dynamic Jahn-Teller effect, suggesting that the cuprates constitute a form of
Berryonic matter. This in turn suggests a new model for the dynamic Jahn-Teller
effect as a form of flux phase. A simple model of the Cu-O bond stretching
phonons allows an estimate of electron-phonon coupling for these modes,
explaining why the half breathing mode softens so much more than the full
oxygen breathing mode. The anomalous properties of provide a coupling
(correlated hopping) which acts to stabilize density wave phases.Comment: Major Revisions: includes comparisons with specific cuprate phonon
modes, 16 eps figures, revte
Identification of the bulk pairing symmetry in high-temperature superconductors: Evidence for an extended s-wave with eight line nodes
we identify the intrinsic bulk pairing symmetry for both electron and
hole-doped cuprates from the existing bulk- and nearly bulk-sensitive
experimental results such as magnetic penetration depth, Raman scattering,
single-particle tunneling, Andreev reflection, nonlinear Meissner effect,
neutron scattering, thermal conductivity, specific heat, and angle-resolved
photoemission spectroscopy. These experiments consistently show that the
dominant bulk pairing symmetry in hole-doped cuprates is of extended s-wave
with eight line nodes, and of anisotropic s-wave in electron-doped cuprates.
The proposed pairing symmetries do not contradict some surface- and
phase-sensitive experiments which show a predominant d-wave pairing symmetry at
the degraded surfaces. We also quantitatively explain the phase-sensitive
experiments along the c-axis for both Bi_{2}Sr_{2}CaCu_{2}O_{8+y} and
YBa_{2}Cu_{3}O_{7-y}.Comment: 11 pages, 9 figure
Radioimmunotherapy of B-cell lymphoma with radiolabelled anti-CD20 monoclonal antibodies
CD20 has proven to be an excellent target for the treatment of B-cell lymphoma, first for the chimeric monoclonal antibody rituximab (Rituxanâą), and more recently for the radiolabelled antibodies Y-90 ibritumomab tiuxetan (Zevalinâą) and I-131 tositumomab (Bexxarâą). Radiation therapy effects are due to beta emissions with path lengths of 1â5 mm; gamma radiation emitted by I-131 is the only radiation safety issue for either product. Dose-limiting toxicity for both radiolabelled antibodies is reversible bone marrow suppression. They produce response rates of 70%â90% in low-grade and follicular lymphoma and 40%â50% in transformed low-grade or intermediate-grade lymphomas. Both products produce higher response rates than related unlabelled antibodies, and both are highly active in patients who are relatively resistant to rituximab-based therapy. Median duration of response to a single course of treatment is about 1 year with complete remission rates that last 2 years or longer in about 25% of patients. Clinical trials suggest that anti- CD20 radioimmunotherapy is superior to total body irradiation in patients undergoing stem cell supported therapy for B-cell lymphoma, and that it is a safe and efficacious modality when used as consolidation therapy following chemotherapy. Among cytotoxic treatment options, current evidence suggests that one course of anti-CD20 radioimmunotherapy is as efficacious as six to eight cycles of combination chemotherapy. A major question that persists is how effective these agents are in the setting of rituximab- refractory lymphoma. These products have been underutilised because of the complexity of treatment coordination and concerns regarding reimbursement
Interplay of Electron-Phonon Interaction and Electron Correlation in High Temperature Superconductivity
We study the electron-phonon interaction in the strongly correlated
superconducting cuprates. Two types of the electron-phonon interactions are
introduced in the model; the diagonal and off-diagonal interactions which
modify the formation energy of the Zhang-Rice singlet and its transfer
integral, respectively. The characteristic phonon-momentum and
electron-momentum dependence resulted from the off-diagonal coupling
can explain a variety of experiments. The vertex correction for the
electron-phonon interaction is formulated in the SU(2) slave-boson theory by
taking into account the collective modes in the superconducting ground states.
It is shown that the vertex correction enhances the attractive potential for
the d-wave paring mediated by phonon with around
which corresponds to the half-breathing mode of the oxygen
motion.Comment: 14 pages, 13 figure
Dispersion of Ordered Stripe Phases in the Cuprates
A phase separation model is presented for the stripe phase of the cuprates,
which allows the doping dependence of the photoemission spectra to be
calculated. The idealized limit of a well-ordered array of magnetic and charged
stripes is analyzed, including effects of long-range Coulomb repulsion.
Remarkably, down to the limit of two-cell wide stripes, the dispersion can be
interpreted as essentially a superposition of the two end-phase dispersions,
with superposed minigaps associated with the lattice periodicity. The largest
minigap falls near the Fermi level; it can be enhanced by proximity to a (bulk)
Van Hove singularity. The calculated spectra are dominated by two features --
this charge stripe minigap plus the magnetic stripe Hubbard gap. There is a
strong correlation between these two features and the experimental
photoemission results of a two-peak dispersion in LaSrCuO, and
the peak-dip-hump spectra in BiSrCaCuO. The
differences are suggestive of the role of increasing stripe fluctuations. The
1/8 anomaly is associated with a quantum critical point, here expressed as a
percolation-like crossover. A model is proposed for the limiting minority
magnetic phase as an isolated two-leg ladder.Comment: 24 pages, 26 PS figure
- âŠ