17 research outputs found
POTENTIAL GENETIC AGENT BFL1 FOR TARGETED THERAPY IN CHRONIC LYMPHOCYTIC LEUKEMIA
Background: Many prognostic factors have been identified in chronic lymphocytic leukemia (CLL) but new ones are still desired. The biological characterization of CLL is now being translated into novel treatment strategies. One new prognostic factor, and therapeutic target, may be BFL1. It is both a serum and a molecular marker that contributes to the progression of CLL and its resistance to chemotherapy. The aim of this study was to evaluate the prognostic value of BFL1 and to assess its correlation with other known prognostic markers in CLL for the cladribine and cyclophosphamide regimen (CC). Methods: qPCR TaqManÂź Low Density Array was used for gene expression measurements. Assessment of CD38, ZAP70 and BFL-1 proteins expression was done by means of flow cytometry. Serum TK activity was measured by immunoassay. Results: Protein BFL1 expression was found to be significantly higher in CLL patients than healthy volunteers (p=0.001). Moreover its level was significantly higher in patients with no response (NR) to CC therapy (p=0.009). The expression of BFL1 was considerably down regulated during CC treatment and BFL1 mRNA levels were inversely correlated with apoptotic response. In addition, protein BFL1 expression was found to be similar to thymidine kinase (TK) concentration regarding treatment response. As far as other markers are concerned, a positive correlation was identified between BFL1 and TK (r=0.52, p=0.01). Conclusions: Our findings suggest that BFL1 contributes to chemoresistance and may be a co-existing prognostic factor in CLL in the future
Associations between Attention-Deficit/Hyperactivity Disorder and various eating disorders: A Swedish nationwide population study using multiple genetically informative approaches
Background Although attention-deficit hyperactivity/impulsivity disorder (ADHD) and eating disorders (EDs) frequently co-occur, little is known about the shared etiology. In this study we comprehensively investigated the genetic association between ADHD and various EDs, including anorexia nervosa (AN) and other EDs (OED, including bulimia nervosa [BN]). Methods We applied different genetically informative designs to register-based information of a Swedish nationwide population (N=3,550,118). We first examined the familial co-aggregation of clinically diagnosed ADHD and EDs across multiple types of relatives. We then applied quantitative genetic modeling in full-sisters and maternal half-sisters to estimate the genetic correlations between ADHD and EDs. We further tested the associations between ADHD polygenic risk scores (PRS) and ED symptoms, and between AN PRS and ADHD symptoms, in a genotyped population-based sample (N=13,472). Results Increased risk of all types of EDs was found in individuals with ADHD (any ED: OR [95% CI]=3.97 [3.81-4.14], AN: 2.68 [2.15-2.86], OED: 4.66 [4.47-4.87], BN: 5.01 [4.63-5.41]) and their relatives compared to individuals without ADHD and their relatives. The magnitude of the associations reduced as the degree of relatedness decreased, suggesting shared familial liability between ADHD and EDs. Quantitative genetic models revealed stronger genetic correlation of ADHD with OED (0.37 [0.31-0.42]) than with AN (0.14 [0.05-0.22]). ADHD PRS correlated positively with ED symptom measures overall and sub-scales âdrive for thinnessâ and âbody dissatisfactionâ, despite small effect sizes. Conclusions We observed stronger genetic association with ADHD for non-AN EDs than AN, highlighting specific genetic correlation beyond a general genetic factor across psychiatric disorders
Recommended from our members
Changes in liver metabolic pathways demonstrate efficacy of the combined dietary and microbial therapeutic intervention in MASLD mouse model.
OBJECTIVE: Metabolic dysfunction-associated steatotic liver disease (MASLD), formerly known as non-alcoholic fatty liver disease (NAFLD), is the most prevalent liver disease globally, yet no therapies are approved. The effects of Escherichia coli Nissle 1917 expressing aldafermin, an engineered analog of the intestinal hormone FGF19, in combination with dietary change were investigated as a potential treatment for MASLD. METHODS: MASLD was induced in C57BL/6J male mice by American lifestyle-induced obesity syndrome diet and then switched to a standard chow diet for seven weeks. In addition to the dietary change, the intervention group received genetically engineered E. coli Nissle expressing aldafermin, while control groups received either E. coli Nissle vehicle or no treatment. MASLD-related plasma biomarkers were measured using an automated clinical chemistry analyzer. The liver steatosis was assessed by histology and bioimaging analysis using Fiji (ImageJ) software. The effects of the intervention in the liver were also evaluated by RNA sequencing and liquid-chromatography-based non-targeted metabolomics analysis. Pathway enrichment studies were conducted by integrating the differentially expressed genes from the transcriptomics findings with the metabolites from the metabolomics results using Ingenuity pathway analysis. RESULTS: After the intervention, E. coli Nissle expressing aldafermin along with dietary changes reduced body weight, liver steatosis, plasma aspartate aminotransferase, and plasma cholesterol levels compared to the two control groups. The integration of transcriptomics with non-targeted metabolomics analysis revealed the downregulation of amino acid metabolism and related receptor signaling pathways potentially implicated in the reduction of hepatic steatosis and insulin resistance. Moreover, the downregulation of pathways linked to lipid metabolism and changes in amino acid-related pathways suggested an overall reduction of oxidative stress in the liver. CONCLUSIONS: These data support the potential for using engineered microbial therapeutics in combination with dietary changes for managing MASLD
Changes in liver metabolic pathways demonstrate efficacy of the combined dietary and microbial therapeutic intervention in MASLD mouse model
Objective: Metabolic dysfunction-associated steatotic liver disease (MASLD), formerly known as non-alcoholic fatty liver disease (NAFLD), is the most prevalent liver disease globally, yet no therapies are approved. The effects of Escherichia coli Nissle 1917 expressing aldafermin, an engineered analog of the intestinal hormone FGF19, in combination with dietary change were investigated as a potential treatment for MASLD. Methods: MASLD was induced in C57BL/6J male mice by American lifestyle-induced obesity syndrome diet and then switched to a standard chow diet for seven weeks. In addition to the dietary change, the intervention group received genetically engineered E. coli Nissle expressing aldafermin, while control groups received either E. coli Nissle vehicle or no treatment. MASLD-related plasma biomarkers were measured using an automated clinical chemistry analyzer. The liver steatosis was assessed by histology and bioimaging analysis using Fiji (ImageJ) software. The effects of the intervention in the liver were also evaluated by RNA sequencing and liquid-chromatography-based non-targeted metabolomics analysis. Pathway enrichment studies were conducted by integrating the differentially expressed genes from the transcriptomics findings with the metabolites from the metabolomics results using Ingenuity pathway analysis. Results: After the intervention, E. coli Nissle expressing aldafermin along with dietary changes reduced body weight, liver steatosis, plasma aspartate aminotransferase, and plasma cholesterol levels compared to the two control groups. The integration of transcriptomics with non-targeted metabolomics analysis revealed the downregulation of amino acid metabolism and related receptor signaling pathways potentially implicated in the reduction of hepatic steatosis and insulin resistance. Moreover, the downregulation of pathways linked to lipid metabolism and changes in amino acid-related pathways suggested an overall reduction of oxidative stress in the liver. Conclusions: These data support the potential for using engineered microbial therapeutics in combination with dietary changes for managing MASLD