111 research outputs found
Hawking Radiation of a Quantum Black Hole in an Inflationary Universe
The quantum stress-energy tensor of a massless scalar field propagating in
the two-dimensional Vaidya-de Sitter metric, which describes a classical model
spacetime for a dynamical evaporating black hole in an inflationary universe,
is analyzed. We present a possible way to obtain the Hawking radiation terms
for the model with arbitrary functions of mass. It is used to see how the
expansion of universe will affect the dynamical process of black hole
evaporation. The results show that the cosmological inflation has an
inclination to depress the black hole evaporation. However, if the cosmological
constant is sufficiently large then the back-reaction effect has the
inclination to increase the black hole evaporation. We also present a simple
method to show that it will always produce a divergent flux of outgoing
radiation along the Cauchy horizon where the curvature is a finite value. This
means that the Hawking radiation will be very large in there and shall modify
the classical spacetime drastically. Therefore the black hole evaporation
cannot be discussed self-consistently on the classical Vaidya-type spacetime.
Our method can also be applied to analyze the quantum stress-energy tensor in
the more general Vaidya-type spacetimes.Comment: Proper boundary will lead to anti-evaporation of schwarzschild-de
Sitter black holes, as corrected in Class. Quantum Grav. 11 (1994) 28
Generalized Vaidya Solutions
A large family of solutions, representing, in general, spherically symmetric
Type II fluid, is presented, which includes most of the known solutions to the
Einstein field equations, such as, the monopole-de Sitter-charged Vaidya ones.Comment: Gen. Relativ. Grav. 31 (1), 107-114 (1999
The causal structure of dynamical charged black holes
We study the causal structure of dynamical charged black holes, with a
sufficient number of massless fields, using numerical simulations. Neglecting
Hawking radiation, the inner horizon is a null Cauchy horizon and a curvature
singularity due to mass inflation. When we include Hawking radiation, the inner
horizon becomes space-like and is separated from the Cauchy horizon, which is
parallel to the out-going null direction. Since a charged black hole must
eventually transit to a neutral black hole, we studied the neutralization of
the black hole and observed that the inner horizon evolves into a space-like
singularity, generating a Cauchy horizon which is parallel to the in-going null
direction. Since the mass function is finite around the inner horizon, the
inner horizon is regular and penetrable in a general relativistic sense.
However, since the curvature functions become trans-Planckian, we cannot
saymore about the region beyond the inner horizon, and it is natural to say
that there is a 'physical' space-like singularity. However, if we assume an
exponentially large number of massless scalar fields, our results can be
extended beyond the inner horizon. In this case, strong cosmic censorship and
black hole complementarity can be violated.Comment: 23 pages, 23 figure
- …