23 research outputs found

    Cytotoxic effects of two extracts from garlic (Allium sativum L.) cultivars on the human squamous carcinoma cell line SCC-15

    Get PDF
    AbstractGarlic (Allium sativum L., Alliaceae) has acquired a reputation as a therapeutic agent and herbal remedy to prevent and treat several pathologies. The aim of the present study was to determine the effect of two Allium sativum L. cultivars, Harnaƛ and Morado, on reactive oxygen species (ROS) production, viability and apoptotic process in human squamous carcinoma cell line SCC-15. The experiments were conducted on SCC-15 cell line exposed to increasing concentrations of garlic extracts of 0.062, 0.125, 0.250, 0.500 and 1.000mg/mL. After the experiments, ROS formation, caspase-3 activity and neutral red uptake were measured in the cells, and in a collected medium lactate dehydrogenase (LDH) release was measured. The Spanish cultivar Morado has demonstrated higher potential to stimulate ROS production in SCC-15 cells after a short time period (6h) than the Polish cultivar Harnaƛ. However, the Polish cultivar Harnaƛ manifested more prolonged potential to stimulate ROS production in SCC-15 cells. Both studied garlic extracts induced cytotoxicity on SCC-15 cell line which was probably ROS-dependent. We also determined that in SCC-15 cells high concentrations of studied extracts did not cause activation of caspase-3 which suggested caspase-independent or necrotic cell death

    Bioremoval and Detoxification of the Anticancer Drug Mitoxantrone Using Immobilized Crude Versatile Peroxidase (icVP/Ba) Bjerkandera adusta CCBAS 930

    No full text
    The aim of this study was to evaluate the biodecolorization and detoxification of the anticancer drug mitoxantron (MTX) by immobilized crude versatile peroxidase of Bjerkandera adusta CCBAS 930 (icVP/Ba). The concentrated crude VP was obtained from B. adusta CCBAS 930 culture on medium with MTX (µg/mL) addition, immobilized with 4% sodium alginate. MTX removal degree (decolorization), levels of phenolic compounds and free radicals were determined during MTX biotransformation. Moreover, the phytotoxicity (Lepidium sativum L.), biotoxicity (multi-species microbial assay, MARA), and genotoxicity (SOS Chromotest) of MTX were evaluated before and after the biological treatment. The use of icVP/Ba (95 U/mL) significantly shortened the bioremoval of 10 µg/mL MTX (95.57% after 72 h). MTX removal by icVP/Ba was correlated with an 85% and 90% decrease in the levels of phenolic compounds and free radicals, respectively. In addition, the use of icVP/Ba contributed to a decrease in the phyto-, bio-, and genotoxicity of MTX. This is the first study to describe the possibility of removing MTX using immobilized crude fungal peroxidase

    Enhanced Efficiency of the Removal of Cytostatic Anthracycline Drugs Using Immobilized Mycelium of Bjerkandera adusta CCBAS 930

    No full text
    The aim of this study was to evaluate the bioremoval of anthracycline antibiotics (daunomycin-DNR, doxorubicin–DOX, and mitoxantrone-MTX) by immobilized mycelium of B. adusta CCBAS 930. The activity of oxidoreductases: versatile peroxidases (VP), superoxide dismutase (SOD), catalase (CAT), and glucose oxidase (GOX), and the levels of phenolic compounds (PhC) and free radicals (SOR) were determined during the biotransformation of anthracyclines by B. adusta strain CCBAS 930. Moreover, the phytotoxicity (Lepidium sativum L.), biotoxicity (MARA assay), and genotoxicity of anthracyclines were evaluated after biological treatment. After 120 h, more than 90% of anthracyclines were removed by the immobilized mycelium of B. adusta CCBAS 930. The effective biotransformation of anthracyclines was correlated with detoxification and reduced genotoxicity

    Biodecolorization of anthraquinone dyes using immobilised mycelium of

    No full text
    The aim of this study was to characterize the activity of oxidoreductases during biotransformation of 0.01% anthraquinone dyes: Alizarin Blue Black B (ABBB) and Acid Blue 129 (AB129), Carminic Acid (CA), Remazol Brilliant Blue R (RBBR), Acid Green 25 (AG25) and Poly R-478 by immobilized strain of Bjerkandera adusta CCBAS 930. Phenolic compounds, phytotoxicity (Lepidium sativum L.), biotoxicity were evaluated to determine the toxicity of anthraquinone dyes before and after the treatment with immobilized B. adusta CCBAS 930. More than 60% of CA and AB129 were removed by immobilized B. adusta CCBAS after 7 days. No secondary products toxic to plants and bacteria were formed during immobilized cultures of B. adusta CCBAS 930

    Influence of Elicitation and Drying Methods on Anti-Metabolic Syndrome, and Antimicrobial Properties of Extracts and Hydrolysates Obtained from Elicited Lovage (Levisticum officinale Koch)

    No full text
    This research aims to investigate the influence of elicitation and drying methods (natural, convection, microwave, and freeze-drying), with jasmonic acid (JA) and yeast extract (YE) on the biological activity of extracts and hydrolysates from lovage (Levisticum officinale Koch) leaves. The results indicate that the highest TPC was determined for hydrolysates obtained from JA-elicited microwave-dried lovage (24.96 mg/gDW). The highest ACE and lipase inhibitory activity was noted for PBS extract obtained from JA-elicited lovage after microwave drying (EC50 = 0.16 and 0.12 mg/mL, respectively). Ethanolic extract from JA-elicited lovage after freeze-drying was characterized by the highest α-amylase inhibitory activity (EC50 = 3.92 mg/mL) and the highest α-glucosidase inhibitory activity (EC50 = 1.43 mg/mL) was noted for hydrolysates from control plants subjected to freeze-drying. The highest antimicrobial activity towards C. albicans yeasts was observed for microwave ethanolic extracts with minimal inhibition (MIC) and lethal (MLC) concentrations of 0.625 and 1.25 mg/mL, respectively

    Possibility to Biotransform Anthracyclines by Peroxidases Produced by <i>Bjerkandera adusta</i> CCBAS 930 with Reduction of Geno- and Cytotoxicity and Pro-Oxidative Activity

    No full text
    The aim of this study was to evaluate the bioremoval mechanism of anthracycline antibiotics by the white-rot fungus B. adusta CCBAS 930. The activity of oxidoreductases and levels of phenolic compounds and free radicals were determined during the biotransformation of anthraquinone antibiotics: daunomycin (DNR) and doxorubicin (DOX) by B. adusta strain CCBAS 930. Moreover, phytotoxicity (Lepidium sativum L.), ecotoxicity (Vibrio fischeri), genotoxicity and cytotoxicity of anthraquinone dyes were evaluated before and after biological treatment. More than 80% and 90% of DNR and DOX were removed by biodegradation (decolorization). Initial solutions of DNR and DOX were characterized by eco-, phyto-, geno- and cytotoxicity. Despite efficient decolorization, secondary metabolites, toxic to bacteria, formed during biotransformation of anthracycline antibiotics in B. adusta CCBAS 930 cultures. DNR and DOX metabolites did not increase reactive oxygen species (ROS) production in human fibroblasts and resazurin reduction. DNR metabolites did not change caspase-3 activity

    Possibility to Biotransform Anthracyclines by Peroxidases Produced by Bjerkandera adusta CCBAS 930 with Reduction of Geno- and Cytotoxicity and Pro-Oxidative Activity

    No full text
    The aim of this study was to evaluate the bioremoval mechanism of anthracycline antibiotics by the white-rot fungus B. adusta CCBAS 930. The activity of oxidoreductases and levels of phenolic compounds and free radicals were determined during the biotransformation of anthraquinone antibiotics: daunomycin (DNR) and doxorubicin (DOX) by B. adusta strain CCBAS 930. Moreover, phytotoxicity (Lepidium sativum L.), ecotoxicity (Vibrio fischeri), genotoxicity and cytotoxicity of anthraquinone dyes were evaluated before and after biological treatment. More than 80% and 90% of DNR and DOX were removed by biodegradation (decolorization). Initial solutions of DNR and DOX were characterized by eco-, phyto-, geno- and cytotoxicity. Despite efficient decolorization, secondary metabolites, toxic to bacteria, formed during biotransformation of anthracycline antibiotics in B. adusta CCBAS 930 cultures. DNR and DOX metabolites did not increase reactive oxygen species (ROS) production in human fibroblasts and resazurin reduction. DNR metabolites did not change caspase-3 activity

    Evaluation of the Richness, Species Diversity, and Biosafety of Saprotrophic Fungal Communities in Constructed Wetlands and Biological Wastewater Ponds

    No full text
    The present study was focused on the characterization of the biocenotic diversity of saprotrophic fungi, taking into account the impact of various treatment systems and technological stages as well as the physicochemical properties of wastewater. The biodegradation potential, the hazard posed to humans, animals, and the environment, and the effectiveness of elimination of propagules were evaluated. The most effective elimination of fungal propagules was recorded in hybrid constructed wetland systems with horizontal (HF-CW) and vertical (VF-CW) wastewater flow, especially in the VF-HF objects. The fungal communities present in wastewater from small constructed wetland (CW) and wastewater stabilization ponds (WSP) were dominated by ubiquitous terrestrial molds accompanied by a minimal number of yeasts. The similarity of the species composition of the fungal communities between the treatment plants was generally low, whereas the species diversity together with the population size was very high at the various stages of wastewater treatment. Species with potential pathogenicity to humans and animals accounted for over 45%, i.e., were classified as BioSafety Level 1 and 2 (BSL-1 and BSL-2 groups), and potentially phytopathogenic fungi represented 31.5% of the mycobiota species composition. The dynamics of fungal growth were correlated with the content of organic pollutants and nutrients (nitrogen and phosphorus) and with oxygen deficiency. The accumulation of nitrates corresponded to the decline in the frequency of fungi in treated wastewater. The lowest efficiency of the removal of fungi was exhibited by the biological wastewater stabilization ponds
    corecore