17 research outputs found

    Antimicrobial Resistance of <i>Erysipelothrix rhusiopathiae</i> Strains Isolated from Geese to Antimicrobials Widely Used in Veterinary Medicine

    No full text
    The aim of this study was to determine the antibiotic resistance of E. rhusiopathiae when isolated from clinical outbreaks of erysipelas in geese to antimicrobials commonly used in poultry production. All isolates were susceptible to amoxicillin alone or with clavulanic acid, with MIC values ranging from 0.016 to 0.125 μg/mL. Ninety-six percent of isolates were fully sensitive to penicillin G (MIC 0.125–0.5 μg/mL). All isolates were fully or moderately sensitive to erythromycin (MIC 0.125–0.5 μg/mL). Most E. rhusiopathiae isolates proved resistant to fluoroquinolones (76.6% of isolates were resistant to enrofloxacin, with MIC values ranging from 0.064 to 32 μg/mL, and 68% were resistant to norfloxacin, with MIC values ranging from 0.094 to 96 μg/mL), and tetracyclines (61.7% of isolates were resistant to doxycycline, with MIC values ranging from 0.25 to 64 μg/mL, and 63.8% were resistant to tetracycline, with MIC values ranging from 0.38 to 256 μg/mL). Point mutations in the gyrA gene (responsible for fluoroquinolone resistance) and the presence of the tetM gene (responsible for tetracycline resistance) were noted in most of the resistant isolates. Multidrug resistance, defined as resistance to at least one substance in three or more antimicrobial classes, was not observed

    Molecular Analysis of the <i>Heterakis dispar</i> Population in Domestic Geese Based on the ITS1-5.8rRNA-ITS2 Fragment

    No full text
    Heterakidosis is a parasitic infection in birds caused by the cecal parasite Heterakis spp. The most common species in geese is H. dispar, the largest avian heterakids species. Because of a scarcity of data concerning the H. dispar population, the aim of this study was the genetic analysis of Heterakis dispar isolated from geese flocks based on the ITS1-5.8rRNA-ITS2 fragment. Among the 71 H. dispar specimens isolated from 20 geese flocks, six haplotypes were determined (A, B, C, D, E, and F). The four nucleotide substitutions were noted in both ITS fragments, and all of them were transitions between adenine and guanine, or thymine and cytosine. The most frequently noted haplotype was type A (45%), followed by type B (18.3%), type C and D (11.3%), type E (8.5%), and F (5.6%). Infection with nematodes from different haplotype groups was noted in 30% of the flocks, with type A being the most prevalent, followed by types B, D, or E to make up 100%. This study represents the first H. dispar population analysis based on the ITS1-5.8rRNA-ITS2 fragment

    Tetratrichomoniasis in the Geese Flock&mdash;Case Report

    No full text
    Infections caused by tetratrichomonas are commonly observed in geese. Most cases are subclinical, and the clinical form of the disease manifests itself with a greater mortality and the presence of caseous content in ceca. We describe the case of tetratrichomoniasis in a geese flock caused by Tetratrichomonas gallinarum, with the genetic analysis of the isolate being based on the fragments of 18SrRNA and ITS1-5.8rRNA-ITS2

    Prevalence of Blastocystis in Geese Reproductive Flocks

    No full text
    Blastocystis is a unicellular, anaerobic protozoan that has a low specificity for the hosts, and it could be a zoonosis. There are not many data about the occurrence of Blastocystis in bird species, and this study aimed to check the prevalence of Blastocystis infection in reproductive geese flocks. The result obtained showed that a parasite was present in 46.5% of tested flocks. The extensiveness of the Blastocystis invasion in reproductive geese flocks was low because the genetic material of parasites was found only in 7.48% of samples. There was no correlation between the infection and the bird&rsquo;s age or the flock size. The data obtained showed that geese could be the source of infections in humans who have contact with carriers of the infection

    Uncommon Non-Candida Yeasts in Healthy Turkeys—Antimicrobial Susceptibility and Biochemical Characteristic of Trichosporon Isolates

    No full text
    The microbiota of the gastrointestinal tract of humans and animals is inhabited by a diverse community of bacteria, fungi, protozoa, and viruses. In cases where there is an imbalance in the normal microflora or an immunosuppression on the part of the host, these opportunistic microorganisms can cause severe infections. The study presented here evaluates the biochemical and antifungal susceptibility features of Trichosporon spp., uncommon non-Candida strains isolated from the gastrointestinal tract of healthy turkeys. The Trichosporon coremiiforme and Trichosporon (Apiotrichum) montevideense accounted for 7.7% of all fungi isolates. The biochemical tests showed that Trichosporon coremiiforme had active esterase (C4), esterase-lipase (C8) valine arylamidase, naphthol-AS-BI phosphohydrolase, α-galactosidase, and β-glucosidase. Likewise, Trichosporon montevideense demonstrated esterase-lipase (C8), lipase (C14), valine arylamidase, naphthol-AS-BI phosphohydrolase, α-galactosidase, and β-glucosidase activity. T.coremiiforme and T. monteviidense isolated from turkeys were itraconazole resistant and amphotericin B, fluconazole, and voriconazole susceptible. Compared with human isolates, the MIC range and MIC values of turkey isolates to itraconazole were in a higher range limit in both species, while MIC values to amphotericin B, fluconazole, and voriconazole were in a lower range limit. Furthermore, the obtained ITS1—5.8rRNA—ITS2 fragment sequences were identical with T. coremiiforme and T. montevideense sequences isolated from humans indicating that these isolates are shared pathogens

    E-test determination of antifungal susceptibility of Candida species isolated from turkeys

    No full text
    Candida species are a natural component of the intestinal tract microflora, but in favourable conditions they can cause superficial, mucosal, or even systemic candidiasis. Poultry production might be a source of human drug-resistant yeast infections, including Candida spp. The limited data concerning the antifungal susceptibility of poultry Candida isolates prompted us to carry out research to determine the susceptibility of isolates from turkey intestinal tracts

    Early Post-Hatch Nutrition Influences Performance and Muscle Growth in Broiler Chickens

    No full text
    The poultry industry is under pressure to produce safe and good quality meat in the welfare conditions. Many areas such as genetics, biosecurity, and immunoprophylaxis were improved, and hatchery is one of the areas in which welfare could be improved for better production output. The aim of the study was to investigate the effect of early post-hatch nutrition providing body weight and muscle development in broiler chickens. The experiment involving two groups (chicken hatched with access to water and feed in the hatcher, and chicken without feed and water in hatcher) was replicated three times, and the body weights and breast-muscle index of the randomly chosen 30 chickens per group in each term were measured on the 1st, 7th, 21st, and 35th day of life. The breast-muscle sample was taken for genetic examination (the expression of the myoD, myoG, and MRF4 genes) and histological examination. The results showed that the positive effect of early nutrition was observed on the seventh day of bird life with higher expression of myoG and MRF4 and higher body weight of the birds. The positive effect of early nutrition on the diameter of the breast-muscle fibers was visible on days 21 and 35 of chicken life. The average final body weight in groups with early access to food and water was 5% higher than in groups hatched under classic conditions. Conclusions: early feeding in the hatcher improves performance and muscle growth in broiler chickens

    Impact of early posthatch feeding on the immune system and selected hematological, biochemical, and hormonal parameters in broiler chickens

    No full text
    ABSTRACT: Under commercial conditions, chicks hatch within a 24 to 48 h window, a period known as the hatching window. Subsequently, they undergo various treatments before finally being transported to the broiler farm. These procedures may delay the chicks’ access to food and water, sometimes receiving them as late as 72 h after hatching. Previous studies have indicated that fasting during this initial period is detrimental, leading to impaired body growth, compromised immune system response, and hindered muscle development. The objective of this study was to assess the impact of early posthatch feeding on immune system organs and selected hematological, biochemical, and hormonal parameters. The experiment utilized Ross 308 broiler eggs incubated under typical commercial hatchery conditions. The experimental group's eggs were hatched in HatchCare hatchers (HC) with immediate access to feed and water, while the control group's eggs were hatched under standard conditions (ST). Thirty chickens from each group were assessed on the 1st (D1), 7th (D7), 21st (D21), and 35th (D35) day after hatching. On D1, the HC group exhibited lower hemoglobin, hematocrit, and total serum protein values, suggesting that early access to water prevents initial dehydration in newborn chicks. Conversely, the ST group showed a stress reaction on D1 due to feed deprivation, leading to an almost 2-fold higher serum corticosterone concentration compared to the HC group. However, this increase did not result in a significant change in the heterophil/lymphocyte ratio. Furthermore, the HC group displayed an increase in triglyceride concentration and a decrease in HDL concentration on D1. On D7, the HC group exhibited an increased relative weight of the bursa and a higher CD4+ cell number in the cecal tonsil (CT), indicating a more rapid development of these organs resulting from early stimulation of the gastrointestinal tract. However, early feeding did not influence the numbers of Bu-1+, CD4+, and CD8+ cells or the germinal center (GC) areas in the spleen. In conclusion, early feeding contributes to the welfare of newborn chicks by reducing dehydration and stress levels and stimulating the development of gut-associated lymphoid tissue

    Tylosin Dosage Adjustment Based on Allometric Scaling in Male Turkeys

    No full text
    Turkeys’ body weight (BW) increases 10-fold within only 2.5 months, leading to a change in the pharmacokinetics (PK) of drugs according to allometric principles. Thus, the same dosage may lead to age-dependent variability in efficacy, in particular, to treatment failure and/or selection for resistance. The study aimed to investigate whether a non-linear dosage based on a published allometric model for tylosin clearance, may optimize the internal exposure in growing turkeys. The single dose PK study was performed on turkeys aged 6, 9.5, 13 and 17 weeks (BW from 1.75 kg to 15.75 kg). Tylosin was administered intravenously (i.v.) or orally (p.o.) according to following protocols: Dose = 31.6 × BW0.58 or Dose = 158 × BW0.58, respectively. Plasma tylosin was measured using high-performance liquid chromatography and non-compartmental PK analysis was performed. The area under the curve (AUClast) after i.v. administration was 8.90 ± 1.01; 7.51 ± 1.11; 6.54 ± 1.20 and 8.01 ± 1.75 mg × h/L in 6-; 9.5-; 13- and 17-week-old turkeys, respectively. After p.o. administration AUClast was 4.80 ± 2.92; 4.60 ± 2.45; 3.00 ± 1.49 and 3.24 ± 2.00 mg × h/L in respective age groups indicating high variability. For i.v. administration, the non-linear dosage allowed to minimize the age-dependent variability in AUC. However, due to low oral bioavailability (8–12%) and resulting interindividual variability, the proposed approach may not improve tylosin efficacy in turkeys under farm conditions

    Allometric Optimization of Enrofloxacin Dosage in Growing Male Turkeys: Empirical Evidence for Improved Internal Exposure

    No full text
    Rapid weight gain in turkeys causes a major change in the pharmacokinetics of drugs, leading to age-dependent variability in the internal exposure and, possibly, treatment failure and/or selection for antimicrobial resistance in young individuals. The aim of the study was to investigate whether a non-linear dosing protocol that accounts for the previously established allometric relation between enrofloxacin clearance and body weight (BW) may optimize the internal exposure to enrofloxacin in growing male turkeys. Enrofloxacin was administered four times, between the age of 5 and 16.5 weeks, when the turkeys&rsquo; BW increased from 1.47 to 14.92 kg. Enrofloxacin was given intravenously (i.v.) or orally at the dose calculated as follows: Dose = 30 &times; BW0.59. After i.v. administration, the internal exposure to the drug&mdash;quantified as the area under the concentration&ndash;time curve (AUC)&mdash;was showing little age-related variation. The coefficient of variation (CV) for AUC in all individuals (15.7%) was only slightly higher than within the age groups (5.4&ndash;13.7%). After oral drug administration, CV for AUC in all individuals (22.1%) was similar as within the age groups (8.7&ndash;32.2%). These results show that intra-species allometric scaling may be efficiently implemented in the non-linear approach to enrofloxacin dosage in turkeys in order to obtain a precise internal exposure for the optimal antimicrobial effect
    corecore