1,154 research outputs found
Paramagnetic Phase of a Heavy-Fermion Compound, CeFePO, Probed by 57Fe M\"{o}ssbauer Spectroscopy
57Fe M\"{o}ssbauer spectroscopy was applied to an iron-based layered compound
CeFePO. At temperatures from 9.4 to 293 K, no magnetic splitting was observed
in the M\"ossbauer spectra of CeFePO indicating a paramagnetic phase of the Fe
magnetic sublattice. All the spectra were fitted with a small quadrupole
splitting, and the Debye temperature of CeFePO was found to be \sim448 K. The
isomer shift at room temperature, 0.32 mm/s, was almost equal to those of
LnFeAsO (Ln = La, Ce, Sm). Comparing s-electron density using the isomer shifts
and unit cell volumes, it was found that the Fe of CeFePO has a similar valence
state to other layered iron-based quaternary oxypnictides except LaFePO
^{75}As NMR study of the growth of paramagnetic-metal domains due to electron doping near the superconducting phase in LaFeAsO_{1-x}F_{x}
We studied the electric and magnetic behavior near the phase boundary between
antiferromagnetic (AF) and superconducting (SC) phases for a prototype of
high-T_c pnictides LaFeAsO_{1-x}F_{x} by using nuclear magnetic resonance, and
found that paramagnetic-metal (PM) domains segregate from AF domains. PM
domains grow in size with increasing electron doping level and are accompanied
by the onset of superconductivity, and thus application of pressure or
increasing the doping level causes superconductivity. The existence of PM
domains cannot be explained by the existing paradigm that focuses only on the
relationship between superconductivity and antiferromagnetism. Based on orbital
fluctuation theory, the existence of PM domains is evidence of the
ferroquadrupole state.Comment: 5 figure
Superconductivity at 36 K in Gadolinium-arsenide Oxides GdOFFeAs
In this paper we report the fabrication and superconducting properties of
GdOFFeAs. It is found that when x is equal to 0.17,
GdOFFeAs is a superconductor with the onset transition
temperature T 36.6K. Resistivity anomaly near 130K was
observed for all samples up to x = 0.17, such a phenomenon is similar to that
of LaOFFeAs. Hall coefficient indicates that
GdOFFeAs is conducted by electron-like charge carriers.Comment: 3 pages, 4 figure
Enhanced low-energy spin dynamics with diffusive character in the iron-based superconductor (La0.87Ca0.13)FePO: Analogy with high Tc cuprates (A short note)
In a recent NMR investigation of the iron-based superconductor
(La0.87Ca0.13)FePO [Phys. Rev. Lett. 101, 077006 (2008)] Y. Nakai et al.
reported an anomalous behavior of the nuclear spin-lattice relaxation of 31P
nuclei in the superconducting state: The relaxation rate 1/T1 strongly depends
on the measurement frequency and its T dependence does not show the typical
decrease expected for the superconducting state. In this short note, we point
out that these two observations bear similarity with the situation is some of
the high Tc cuprates.Comment: To appear in J. Phys. Soc. Jpn. (Short Note
Single crystal growth and physical properties of SrFe(AsP)
We report a crystal growth and physical properties of
SrFe(AsP). The single crystals for various s were
grown by a self flux method. For , reaches the maximum value of
30\,K and the electrical resistivity () shows -linear dependence.
As increases, decreases and () changes to -behavior,
indicating a standard Fermi liquid. These results suggest that a magnetic
quantum critical point exists around .Comment: 4 pages, 4 figures, accepted to Supplemental issue of the Journal of
Physical Society of Japan (JPSJ
Superconducting Gap and Pseudogap in Iron-Based Layered Superconductor La(OF)FeAs
We report high-resolution photoemission spectroscopy of newly-discovered
iron-based layered superconductor La(OF)FeAs (Tc = 24 K). We
found that the superconducting gap shows a marked deviation from the isotropic
s-wave symmetry. The estimated gap size at 5 K is 3.6 meV in the s- or axial
p-wave case, while it is 4.1 meV in the polar p- or d-wave case. We also found
a pseudogap of 15-20 meV above Tc, which is gradually filled-in with increasing
temperature and closes at temperature far above Tc similarly to copper-oxide
high-temperature superconductors.Comment: 4 pages, 3 figures, J. Phys. Soc. Jpn. Vol. 77, No. 6 (2008), in
pres
Systematic Study on Fluorine-doping Dependence of Superconducting and Normal State Properties in LaFePO1-xFx
We have investigated the fluorine-doping dependence of lattice constants,
transports and specific heat for polycrystalline LaFePO1-xFx. F doping slightly
and monotonically decreases the in-plane lattice parameter. In the normal
state, electrical resistivity at low temperature is proportional to the square
of temperature and the electronic specific heat coefficient has large value,
indicating the existence of moderate electron-electron correlation in this
system. Hall coefficient has large magnitude, and shows large temperature
dependence, indicating the low carrier density and multiple carriers in this
system. Temperature dependence of the upper critical field suggests that the
system is a two gap superconductor. The F-doping dependence of these properties
in this system are very weak, while in the FeAs system (LaFeAsO), the F doping
induces the large changes in electronic properties. This difference is probably
due to the different F-doping dependence of the lattice in these two systems.
It has been revealed that a pure effect of electron doping on electronic
properties is very weak in this Fe pnictide compound.Comment: 8 pages, 5 figures, accepted for publication in J. Phys. Soc. Jp
Orbital Order, Structural Transition and Superconductivity in Iron Pnictides
We investigate the 16-band d-p model for iron pnictide superconductors in the
presence of the electron-phonon coupling g with the orthorhombic mode which is
crucial for reproducing the recently observed ultrasonic softening. Within the
RPA, we obtain the ferro-orbital order below TQ which induces the
tetragonal-orthorhombic structural transition at Ts = TQ, together with the
stripe-type antiferromagnetic order below TN. Near the phase transitions, the
system shows the s++ wave superconductivity due to the orbital fluctuation for
a large g case with TQ > TN, while the s+- wave due to the magnetic fluctuation
for a small g case with TQ < TN. The former case is consistent with the phase
diagram of doped iron pnictides with Ts > TN.Comment: 5 pages, 5 figures, minor changes, published in J. Phys. Soc. Jp
- âŚ