713 research outputs found
^{75}As NMR study of the growth of paramagnetic-metal domains due to electron doping near the superconducting phase in LaFeAsO_{1-x}F_{x}
We studied the electric and magnetic behavior near the phase boundary between
antiferromagnetic (AF) and superconducting (SC) phases for a prototype of
high-T_c pnictides LaFeAsO_{1-x}F_{x} by using nuclear magnetic resonance, and
found that paramagnetic-metal (PM) domains segregate from AF domains. PM
domains grow in size with increasing electron doping level and are accompanied
by the onset of superconductivity, and thus application of pressure or
increasing the doping level causes superconductivity. The existence of PM
domains cannot be explained by the existing paradigm that focuses only on the
relationship between superconductivity and antiferromagnetism. Based on orbital
fluctuation theory, the existence of PM domains is evidence of the
ferroquadrupole state.Comment: 5 figure
The double life of electrons in magnetic iron pnictides, as revealed by NMR
We present a phenomenological, two-fluid approach to understanding the
magnetic excitations in Fe pnictides, in which a paramagnetic fluid with
gapless, incoherent particle-hole excitations coexists with an
antiferromagnetic fluid with gapped, coherent spin wave excitations. We show
that this two-fluid phenomenology provides an excellent quantitative
description of NMR data for magnetic "122" pnictides, and argue that it finds a
natural justification in LSDA and spin density wave calculations. We further
use this phenomenology to estimate the maximum renormalisation of the ordered
moment that can follow from low-energy spin fluctuations in Fe pnictides. We
find that this is too small to account for the discrepancy between ab intio
calculations and neutron scattering measurements.Comment: Accepted for publication in Europhys. Lett. 6 pages, 4 figure
Origin of critical-temperature enhancement of an iron-based high-T_c superconductor, LaFeAsO_{1-x}F_{x} : NMR study under high pressure
Nuclear magnetic resonance (NMR) measurements of an iron (Fe)-based
superconductor LaFeAsO_{1-x}F_x (x = 0.08 and 0.14) were performed at ambient
pressure and under pressure. The relaxation rate 1/T_1 for the overdoped
samples (x = 0.14) shows T-linear behavior just above T_c, and pressure
application enhances 1/T_1T similar to the behavior of T_c. This implies that
1/T_1T = constant originates from the Korringa relation, and an increase in the
density of states at the Fermi energy D(E_F) leads to the enhancement of T_c.
In the underdoped samples (x = 0.08), 1/T_1T measured at ambient pressure also
shows T-independent behavior in a wide temperature range above T_c. However, it
shows Curie-Weiss-like T dependence at 3.0 GPa accompanied by a small increase
in T_c, suggesting that predominant antiferromagnetic fluctuation suppresses
development of superconductivity or remarkable enhancement of T_c. The
qualitatively different features between underdoped and overdoped samples are
systematically explained by a band calculation with hole and electron pockets
Effect of Structural Parameters on Superconductivity in Fluorine-Free LnFeAsO1-y (Ln=La,Nd)
The crystal structure of LnFeAsO (Ln = La, Nd) has been studied by
the powder neutron diffraction technique. The superconducting phase diagram of
NdFeAsO is established as a function of oxygen content which is
determined by Rietveld refinement. The small As-Fe bond length suggests that As
and Fe atoms are connected covalently. FeAs-tetrahedrons transform toward a
regular shape with increasing oxygen deficiency. Superconducting transition
temperatures seem to attain maximum values for regular FeAs-tetrahedrons
Low-Temperature Rapid Synthesis and Superconductivity of Fe-Based Oxypnictide Superconductors
we were able to develop a novel method to synthesize Fe-based oxypnictide
superconductors. By using LnAs and FeO as the starting materials and a
ball-milling process prior to solid-state sintering, Tc as high as 50.7 K was
obtained with the sample of Sm 0.85Nd0.15FeAsO0.85F0.15 prepared by sintering
at temperatures as low as 1173 K for times as short as 20 min.Comment: 2 pages,2 figures, 1 tabl
Suppression of Magnetic Order by Pressure in BaFe2As2
We performed the dc resistivity and the ZF 75As-NMR measurement of BaFe2As2
under high pressure. The T-P phase diagram of BaFe2As2 determined from
resistivity anomalies and the ZF 75As-NMR clearly revealed that the SDW anomaly
is quite robust against P.Comment: 2 pages, 2 figure
Orbital Order, Structural Transition and Superconductivity in Iron Pnictides
We investigate the 16-band d-p model for iron pnictide superconductors in the
presence of the electron-phonon coupling g with the orthorhombic mode which is
crucial for reproducing the recently observed ultrasonic softening. Within the
RPA, we obtain the ferro-orbital order below TQ which induces the
tetragonal-orthorhombic structural transition at Ts = TQ, together with the
stripe-type antiferromagnetic order below TN. Near the phase transitions, the
system shows the s++ wave superconductivity due to the orbital fluctuation for
a large g case with TQ > TN, while the s+- wave due to the magnetic fluctuation
for a small g case with TQ < TN. The former case is consistent with the phase
diagram of doped iron pnictides with Ts > TN.Comment: 5 pages, 5 figures, minor changes, published in J. Phys. Soc. Jp
On superconducting and magnetic properties of iron-oxypnictides
Pairing symmetry in oxypnictides, a new family of multiband high-Tc
superconductors, is partially imposed by the positions of multiple Fermi
pockets, which itself can give rise to new order parameters, such as s+,-
states or the state of dx^2-y^2 symmetry. Other pairing states may appear on
small pockets for long range interactions, but they are expected to be
sensitive to defects. We identify the competing antiferromagnetic order with
the triplet exciton transition in the semi- metallic background and discuss
whether its coexistence with superconductivity explains the doping dependence
of Tc.Comment: Fig1b replace
Ab initio Derivation of Low-energy Model for Iron-Based Superconductors LaFeAsO and LaFePO
Effective Hamiltonians for LaFeAsO and LaFePO are derived from the
downfolding scheme based on first-principles calculations and provide insights
for newly discovered superconductivity in the family of LnFeAsOF,
Ln = La, Ce, Pr, Nd, Sm, and Gd. Extended Hubbard Hamiltonians for five
maximally localized Wannier orbitals per Fe are constructed dominantly from
five-fold degenerate iron-3 bands. They contain parameters for effective
Coulomb and exchange interactions screened by the polarization of other
electrons away from the Fermi level. The onsite Coulomb interaction estimated
as 2.2-3.3 eV is compared with the transfer integrals between the
nearest-neighbor Fe-3 Wannier orbitals, 0.2-0.3 eV, indicating moderately
strong electron correlation. The Hund's rule coupling is found to be 0.3-0.6
eV. The derived model offers a firm basis for further studies on physics of
this family of materials. The effective models for As and P compounds turn out
to have very similar screened interactions with slightly narrower bandwidth for
the As compound.Comment: 5 pages, 3 figures, 1 table; to appear in J. Phys. Soc. Jpn. Vol. 77
No.9: Revised version contains corrected table values and discussions of
quantitative accuracy of constrained random-phase approximatio
Pressure-induced superconductivity in Iron pnictide compound SrFe2As2
Electrical resistivity under high pressure have been measured on nominally
pure SrFe2As2 up to 14 GPa. The resistivity drop appeared with increasing
pressure, and we clearly observed zero resistivity. The maximum of
superconducting transition temperature (Tc) is 38 K. The value is corresponding
to the one of optimally doping AFe2As2 (A=Sr, Ba) system with K+ ions at the
A2+ site.Comment: 10 pages, 2 figure
- …