6 research outputs found
A Deubiquitylating Complex Required for Neosynthesis of a Yeast Mitochondrial ATP Synthase Subunit
The ubiquitin system is known to be involved in maintaining the integrity of mitochondria, but little is known about the role of deubiquitylating (DUB) enzymes in such functions. Budding yeast cells deleted for UBP13 and its close homolog UBP9 displayed a high incidence of petite colonies and slow respiratory growth at 37°C. Both Ubp9 and Ubp13 interacted directly with Duf1 (DUB-associated factor 1), a WD40 motif-containing protein. Duf1 activates the DUB activity of recombinant Ubp9 and Ubp13 in vitro and deletion of DUF1 resulted in the same respiratory phenotype as the deletion of both UBP9 and UBP13. We show that the mitochondrial defects of these mutants resulted from a strong decrease at 37°C in the de novo biosynthesis of Atp9, a membrane-bound component of ATP synthase encoded by mitochondrial DNA. The defect appears at the level of ATP9 mRNA translation, while its maturation remained unchanged in the mutants. This study describes a new role of the ubiquitin system in mitochondrial biogenesis
Recommended from our members
GlyT-1 inhibition attenuates attentional but not learning or motivational deficits of the Sp4 Hypomorphic mouse model relevant to psychiatric disorders
Serious mental illness occurs in 25% of the general population, with many disorders being neurodevelopmental, lifelong, and debilitating. The wide variation and overlap in symptoms across disorders increases the difficulty of research and treatment development. The NIMH Research Domain of Criteria initiative aims to improve our understanding of the molecular and behavioral consequences of specific neurodevelopmental mechanisms across disorders, enabling targeted treatment development. The transcription factor Specificity Protein 4 (SP4) is important for neurodevelopment and is genetically associated with both schizophrenia and bipolar disorder. Reduced Sp4 expression in mice (hypomorphic) reproduces several characteristics of psychiatric disorders. We further tested the utility of Sp4 hypomorphic mice as a model organism relevant to psychiatric disorders by assessing cognitive control plus effort and decision-making aspects of approach motivation using cross-species-relevant tests. Sp4 hypomorphic mice exhibited impaired attention as measured by the 5-Choice Continuous Performance Test, an effect that was attenuated by glycine type-1 transporter (GlyT-1) inhibition. Hypomorphic mice also exhibited reduced motivation to work for a reward and impaired probabilistic learning. These deficits may stem from affected anticipatory reward, analogous to anhedonia in patients with schizophrenia and other psychiatric disorders. Neither positive valence deficit was attenuated by GlyT-1 treatment, suggesting that these and the attentional deficits stem from different underlying mechanisms. Given the association of SP4 gene with schizophrenia and bipolar disorder, the present studies provide support that personalized GlyT-1 inhibition may treat attentional deficits in neuropsychiatric patients with low SP4 levels
Recommended from our members
Nicotine withdrawal-induced inattention is absent in alpha7 nAChR knockout mice.
RationaleSmoking is the leading cause of preventable death in the USA, but quit attempts result in withdrawal-induced cognitive dysfunction and predicts relapse. Greater understanding of the neural mechanism(s) underlying these cognitive deficits is required to develop targeted treatments to aid quit attempts.ObjectivesWe examined nicotine withdrawal-induced inattention in mice lacking the α7 nicotinic acetylcholine receptor (nAChR) using the five-choice continuous performance test (5C-CPT).MethodsMice were trained in the 5C-CPT prior to osmotic minipump implantation containing saline or nicotine. Experiment 1 used 40 mg kg-1 day-1 nicotine treatment and tested C57BL/6 mice 4, 28, and 52 h after pump removal. Experiment 2 used 14 and 40 mg kg-1 day-1 nicotine treatment in α7 nAChR knockout (KO) and wildtype (WT) littermates tested 4 h after pump removal. Subsets of WT mice were killed before and after pump removal to assess changes in receptor expression associated with nicotine administration and withdrawal.ResultsNicotine withdrawal impaired attention in the 5C-CPT, driven by response inhibition and target detection deficits. The overall attentional deficit was absent in α7 nAChR KO mice despite response disinhibition in these mice. Synaptosomal glutamate mGluR5 and dopamine D4 receptor expression were reduced during chronic nicotine but increased during withdrawal, potentially contributing to cognitive deficits.ConclusionsThe α7 nAChR may underlie nicotine withdrawal-induced deficits in target detection but is not required for response disinhibition deficits. Alterations to the glutamatergic and dopaminergic pathways may also contribute to withdrawal-induced attentional deficits, providing novel targets to alleviate the cognitive symptoms of withdrawal during quit attempts