3,745 research outputs found

    Coulomb drag at zero temperature

    Full text link
    We show that the Coulomb drag effect exhibits saturation at small temperatures, when calculated to the third order in the interlayer interactions. The zero-temperature transresistance is inversely proportional to the third power of the dimensionless sheet conductance. The effect is therefore the strongest in low mobility samples. This behavior should be contrasted with the conventional (second order) prediction that the transresistance scales as a certain power of temperature and is almost mobility-independent. The result demonstrates that the zero-temperature drag is not an unambiguous signature of a strongly-coupled state in double-layer systems.Comment: 4 pages, 2 figure

    Spin Torque Dynamics with Noise in Magnetic Nano-System

    Full text link
    We investigate the role of equilibrium and nonequilibrium noise in the magnetization dynamics on mono-domain ferromagnets. Starting from a microscopic model we present a detailed derivation of the spin shot noise correlator. We investigate the ramifications of the nonequilibrium noise on the spin torque dynamics, both in the steady state precessional regime and the spin switching regime. In the latter case we apply a generalized Fokker-Planck approach to spin switching, which models the switching by an Arrhenius law with an effective elevated temperature. We calculate the renormalization of the effective temperature due to spin shot noise and show that the nonequilibrium noise leads to the creation of cold and hot spot with respect to the noise intensity.Comment: 10 pages, 7 figure

    Spin-torque shot noise in magnetic tunnel junctions

    Full text link
    Spin polarized current may transfer angular momentum to a ferromagnet, resulting in a spin-torque phenomenon. At the same time the shot noise, associated with the current, leads to a non-equilibrium stochastic force acting on the ferromagnet. We derive stochastic version of Landau-Lifshitz-Gilbert equation for a magnetization of a ''free'' ferromagnetic layer in contact with a ''fixed'' ferromagnet. We solve the corresponding Fokker-Planck equation and show that the non-equilibrium noise yields to a non-monotonous dependence of the precession spectrum linewidth on the current.Comment: 5 pages, 2 figure

    Dynamic response of one-dimensional interacting fermions

    Full text link
    We evaluate the dynamic structure factor S(q,ω)S(q,\omega) of interacting one-dimensional spinless fermions with a nonlinear dispersion relation. The combined effect of the nonlinear dispersion and of the interactions leads to new universal features of S(q,ω)S(q,\omega). The sharp peak Sqδ(ωuq)S\propto q\delta(\omega-uq), characteristic for the Tomonaga-Luttinger model, broadens up; S(q,ω)S(q,\omega) for a fixed qq becomes finite at arbitrarily large ω\omega. The main spectral weight, however, is confined to a narrow frequency interval of the width δωq2/m\delta\omega\sim q^2/m. At the boundaries of this interval the structure factor exhibits power-law singularities with exponents depending on the interaction strength and on the wave number qq

    Full Counting Statistics for a Single-Electron Transistor, Non-equilibrium Effects at Intermediate Conductance

    Full text link
    We evaluate the current distribution for a single-electron transistor with intermediate strength tunnel conductance. Using the Schwinger-Keldysh approach and the drone (Majorana) fermion representation we account for the renormalization of system parameters. Nonequilibrium effects induce a lifetime broadening of the charge-state levels, which suppress large current fluctuations.Comment: 4 pages, 1 figur

    Coulomb Blockade of Tunneling between Disordered Conductors

    Full text link
    We determine the zero-bias anomaly of the conductance of tunnel junctions by an approach unifying the conventional Coulomb blockade theory for ultrasmall junctions with the diffusive anomalies in disordered conductors. Both, electron-electron interactions within the electrodes and electron-hole interactions between the electrodes are taken into account nonperturbatively. Explicit results are given for one- and two-dimensional junctions, and the crossover to ultrasmall junctions is discussed.Comment: 4 pages, 1 figure. Final version published in Phys. Rev. Let

    Magneto-polarisability of mesoscopic rings

    Full text link
    We calculate the average polarisability of two dimensional mesoscopic rings in the presence of an Aharonov-Bohm flux. The screening is taken into account self-consistently within a mean-field approximation. We investigate the effects of statistical ensemble, finite frequency and disorder. We emphasize geometrical effects which make the observation of field dependent polarisability much more favourable on rings than on disks or spheres of comparable radius. The ratio of the flux dependent to the flux independent part is estimated for typical GaAs rings.Comment: pages, Revtex, 1 eps figur
    corecore