2 research outputs found

    Islet expression of the DNA repair enzyme 8-oxoguanosine DNA glycosylase (Ogg1) in human type 2 diabetes

    Get PDF
    BACKGROUND: It has become increasingly clear that β-cell failure plays a critical role in the pathogenesis of type 2 diabetes. Free-radical mediated β-cell damage has been intensively studied in type 1 diabetes, but not in human type 2 diabetes. Therefore, we studied the protein expression of the DNA repair enzyme Ogg1 in pancreases from type 2 diabetics. Ogg1 was studied because it is the major enzyme involved in repairing 7,8-dihydro-8-oxoguanosine DNA adducts, a lesion previously observed in a rat model of type 2 diabetes. Moreover, in a gene expression screen, Ogg1 was over-expressed in islets from a human type 2 diabetic. METHODS: Immunofluorescent staining of Ogg1 was performed on pancreatic specimens from healthy controls and patients with diabetes for 2–23 years. The intensity and islet area stained for Ogg1 was evaluated by semi-quantitative scoring. RESULTS: Both the intensity and the area of islet Ogg1 staining were significantly increased in islets from the type 2 diabetic subjects compared to the healthy controls. A correlation between increased Ogg1 fluorescent staining intensity and duration of diabetes was also found. Most of the staining observed was cytoplasmic, suggesting that mitochondrial Ogg1 accounts primarily for the increased Ogg1 expression. CONCLUSION: We conclude that oxidative stress related DNA damage may be a novel important factor in the pathogenesis of human type 2 diabetes. An increase of Ogg1 in islet cell mitochondria is consistent with a model in which hyperglycemia and consequent increased β-cell oxidative metabolism lead to DNA damage and the induction of Ogg1 expression
    corecore