359 research outputs found

    On the road to personalised and precision geomedicine: medical geology and a renewed call for interdisciplinarity

    Get PDF
    Our health depends on where we currently live, as well as on where we have lived in the past and for how long in each place. An individual’s place history is particularly relevant in conditions with long latency between exposures and clinical manifestations, as is the case in many types of cancer and chronic conditions. A patient’s geographic history should routinely be considered by physicians when diagnosing and treating individual patients. It can provide useful contextual environmental information (and the corresponding health risks) about the patient, and should thus form an essential part of every electronic patient/health record. Medical geology investigations, in their attempt to document the complex relationships between the environment and human health, typically involve a multitude of disciplines and expertise. Arguably, the spatial component is the one factor that ties in all these disciplines together in medical geology studies. In a general sense, epidemiology, statistical genetics, geoscience, geomedical engineering and public and environmental health informatics tend to study data in terms of populations, whereas medicine (including personalised and precision geomedicine, and lifestyle medicine), genetics, genomics, toxicology and biomedical/health informatics more likely work on individuals or some individual mechanism describing disease. This article introduces with examples the core concepts of medical geology and geomedicine. The ultimate goals of prediction, prevention and personalised treatment in the case of geology-dependent disease can only be realised through an intensive multiple-disciplinary approach, where the various relevant disciplines collaborate together and complement each other in additive (multidisciplinary), interactive (interdisciplinary) and holistic (transdisciplinary and cross-disciplinary) manners

    Web 3D for Public, Environmental and Occupational Health: Early Examples from Second Life®

    Get PDF
    Over the past three years (2006–2008), the medical/health and public health communities have shown a growing interest in using online 3D virtual worlds like Second Life® (http://secondlife.com/) for health education, community outreach, training and simulations purposes. 3D virtual worlds are seen as the precursors of ‘Web 3D’, the next major iteration of the Internet that will follow in the coming years. This paper provides a tour of several flagship Web 3D experiences in Second Life®, including Play2Train Islands (emergency preparedness training), the US Centers for Disease Control and Prevention—CDC Island (public health), Karuna Island (AIDS support and information), Tox Town at Virtual NLM Island (US National Library of Medicine - environmental health), and Jefferson’s Occupational Therapy Center. We also discuss the potential and future of Web 3D. These are still early days of 3D virtual worlds, and there are still many more untapped potentials and affordances of 3D virtual worlds that are yet to be explored, as the technology matures further and improves over the coming months and years

    Location-based health information services: a new paradigm in personalised information delivery

    Get PDF
    Brute health information delivery to various devices can be easily achieved these days, making health information instantly available whenever it is needed and nearly anywhere. However, brute health information delivery risks overloading users with unnecessary information that does not answer their actual needs, and might even act as noise, masking any other useful and relevant information delivered with it. Users' profiles and needs are definitely affected by where they are, and this should be taken into consideration when personalising and delivering information to users in different locations. The main goal of location-based health information services is to allow better presentation of the distribution of health and healthcare needs and Internet resources answering them across a geographical area, with the aim to provide users with better support for informed decision-making. Personalised information delivery requires the acquisition of high quality metadata about not only information resources, but also information service users, their geographical location and their devices. Throughout this review, experience from a related online health information service, HealthCyberMap , is referred to as a model that can be easily adapted to other similar services. HealthCyberMap is a Web-based directory service of medical/health Internet resources exploring new means to organise and present these resources based on consumer and provider locations, as well as the geographical coverage or scope of indexed resources. The paper also provides a concise review of location-based services, technologies for detecting user location (including IP geolocation), and their potential applications in health and healthcare

    Web GIS in practice: an interactive geographical interface to English Primary Care Trust performance ratings for 2003 and 2004

    Get PDF
    BACKGROUND: On 21 July 2004, the Healthcare Commission released its annual star ratings of the performance of NHS Primary Care Trusts (PCTs) in England for the year ending March 2004. The Healthcare Commission started work on 1 April 2004, taking over all the functions of the former Commission for Health Improvement , which had released the corresponding PCT ratings for 2002/2003 in July 2003. RESULTS: We produced two Web-based interactive maps of PCT star ratings, one for 2003 and the other for 2004 , with handy functions like map search (by PCT name or part of it). The maps feature a colour-blind friendly quadri-colour scheme to represent PCT star ratings. Clicking a PCT on any of the maps will display the detailed performance report of that PCT for the corresponding year. CONCLUSION: Using our Web-based interactive maps, users can visually appreciate at a glance the distribution of PCT performance across England. They can visually compare the performance of different PCTs in the same year and also between 2003 and 2004 (by switching between the synchronised 'PCT Ratings 2003' and 'PCT Ratings 2004' themes). The performance of many PCTs has improved in 2004, whereas some PCTs achieved lower ratings in 2004 compared to 2003. Web-based interactive geographical interfaces offer an intuitive way of indexing, accessing, mining, and understanding large healthcare information sets describing geographically differentiated phenomena. By acting as an enhanced alternative or supplement to purely textual online interfaces, interactive Web maps can further empower organisations and decision makers

    On geography and medical journalology: a study of the geographical distribution of articles published in a leading medical informatics journal between 1999 and 2004

    Get PDF
    BACKGROUND: Studying the contribution of individual countries to leading journals in a given discipline can highlight which countries have the most impact on that discipline, and also give some idea about the geographical outreach of those journals. This paper examines the number of countries that contributed articles to one leading medical informatics journal, Medical Informatics & the Internet in Medicine, and the amount of their contributions between 1999 and the first half of 2004. METHODS: The PubMed citations of all indexed articles from the chosen journal (n = 128) were retrieved online (up to Volume 29, Number 2/June 2004 issue, the latest indexed issue as at 28 January 2005). The country of corresponding author's affiliation for each retrieved citation was recorded. The five-year-and-half corpus of abstracts retrieved from PubMed was further explored using MetaCarta Geographic Text Search . RESULTS: The examined journal has an international outreach, with authors from 24 countries, spanning four continents, contributing to the journal during the studied period. The journal is dominated by a very large number of articles from Europe (81.25% of all articles counted in this study), and in particular from the UK (15.63%) and Greece (15.63%). There were no contributions from Africa or South America. CONCLUSION: A detailed discussion and interpretation of these results and ideas for future analyses are provided. MetaCarta can prove very useful as a bibliometric research tool

    The use of interactive graphical maps for browsing medical/health Internet information resources

    Get PDF
    As online information portals accumulate metadata descriptions of Web resources, it becomes necessary to develop effective ways for visualising and navigating the resultant huge metadata repositories as well as the different semantic relationships and attributes of described Web resources. Graphical maps provide a good method to visualise, understand and navigate a world that is too large and complex to be seen directly like the Web. Several examples of maps designed as a navigational aid for Web resources are presented in this review with an emphasis on maps of medical and health-related resources. The latter include HealthCyberMap maps , which can be classified as conceptual information space maps, and the very abstract and geometric Visual Net maps of PubMed (for demos). Information resources can be also organised and navigated based on their geographic attributes. Some of the maps presented in this review use a Kohonen Self-Organising Map algorithm, and only HealthCyberMap uses a Geographic Information System to classify Web resource data and render the maps. Maps based on familiar metaphors taken from users' everyday life are much easier to understand. Associative and pictorial map icons that enable instant recognition and comprehension are preferred to geometric ones and are key to successful maps for browsing medical/health Internet information resources

    Descriptive review of geographic mapping of severe acute respiratory syndrome (SARS) on the Internet

    Get PDF
    From geographic mapping at different scales to location-based alerting services, geoinformatics plays an important role in the study and control of global outbreaks like severe acute respiratory syndrome (SARS). This paper reviews several geographic mapping efforts of SARS on the Internet that employ a variety of techniques like choropleth rendering, graduated circles, graduated pie charts, buffering, overlay analysis and animation. The aim of these mapping services is to educate the public (especially travellers to potentially at-risk areas) and assist public health authorities in analysing the spatial and temporal trends and patterns of SARS and in assessing/revising current control measures

    Geographic information systems and the spiritual dimension of health: a short position paper

    Get PDF
    The WHO's well known definition of health stressed the indivisibility of human well-being, physical and otherwise, by stating that health is "not merely the absence of disease or infirmity". The spiritual dimension of health is well covered in the medical literature. Different locations on Earth are associated with different interrelated profiles: physical, biological, environmental, socio-economic, cultural, and also spiritual profiles, that do affect and are affected by health (including its spiritual dimension), disease, healthcare, and pastoral care. A number of reviews have been recently published covering the use of Geographic Information Systems (GIS) in understanding and harnessing the importance of location in the health sector. However, no publication so far has discussed the role of GIS in relation to the spiritual dimension of health. This position paper is an attempt to fill in this gap without going into deep details. GIS role in pastoral care ranges from assisting in pattern and trend detection, and in informed decision-making and resource management, to providing routing and educational functions, and even assessing the impact of missionary radio broadcasts. A review of some of the software tools that are currently available in this field is also provided. GIS are ideal tools for improving and coordinating the integration of the health (physical), social, and spiritual/ pastoral dimensions of individual and community care. However to achieve the full potential of GIS in these areas, we still need to combat many cultural and organisational barriers, while making the tools cheaper and much easier to learn and use

    Towards evidence-based, GIS-driven national spatial health information infrastructure and surveillance services in the United Kingdom

    Get PDF
    The term "Geographic Information Systems" (GIS) has been added to MeSH in 2003, a step reflecting the importance and growing use of GIS in health and healthcare research and practices. GIS have much more to offer than the obvious digital cartography (map) functions. From a community health perspective, GIS could potentially act as powerful evidence-based practice tools for early problem detection and solving. When properly used, GIS can: inform and educate (professionals and the public); empower decision-making at all levels; help in planning and tweaking clinically and cost-effective actions, in predicting outcomes before making any financial commitments and ascribing priorities in a climate of finite resources; change practices; and continually monitor and analyse changes, as well as sentinel events. Yet despite all these potentials for GIS, they remain under-utilised in the UK National Health Service (NHS). This paper has the following objectives: (1) to illustrate with practical, real-world scenarios and examples from the literature the different GIS methods and uses to improve community health and healthcare practices, e.g., for improving hospital bed availability, in community health and bioterrorism surveillance services, and in the latest SARS outbreak; (2) to discuss challenges and problems currently hindering the wide-scale adoption of GIS across the NHS; and (3) to identify the most important requirements and ingredients for addressing these challenges, and realising GIS potential within the NHS, guided by related initiatives worldwide. The ultimate goal is to illuminate the road towards implementing a comprehensive national, multi-agency spatio-temporal health information infrastructure functioning proactively in real time. The concepts and principles presented in this paper can be also applied in other countries, and on regional (e.g., European Union) and global levels
    corecore