70 research outputs found

    ATF6α/β-mediated adjustment of ER chaperone levels is essential for development of the notochord in medaka fish.

    Get PDF
    ATF6α and ATF6β are membrane-bound transcription factors activated by regulated intramembrane proteolysis in response to endoplasmic reticulum (ER) stress to induce various ER quality control proteins. ATF6α- and ATF6β single-knockout mice develop normally, but ATF6α/β double knockout causes embryonic lethality, the reason for which is unknown. Here we show in medaka fish that ATF6α is primarily responsible for transcriptional induction of the major ER chaperone BiP and that ATF6α/β double knockout, but not ATF6α- or ATF6β single knockout, causes embryonic lethality, as in mice. Analyses of ER stress reporters reveal that ER stress occurs physiologically during medaka early embryonic development, particularly in the brain, otic vesicle, and notochord, resulting in ATF6α- and ATF6β-mediated induction of BiP, and that knockdown of the α1 chain of type VIII collagen reduces such ER stress. The absence of transcriptional induction of several ER chaperones in ATF6α/β double knockout causes more profound ER stress and impaired notochord development, which is partially rescued by overexpression of BiP. Thus ATF6α/β-mediated adjustment of chaperone levels to increased demands in the ER is essential for development of the notochord, which synthesizes and secretes large amounts of extracellular matrix proteins to serve as the body axis before formation of the vertebra

    A Multicenter, Open-label, Clinical Trial to Assess the Effectiveness and Safety of Allogeneic Hematopoietic Stem Cell Transplantation Using Reduced-intensity Conditioning in Relapsed/refractory Anaplastic Large-cell Lymphoma in Children

    Get PDF
    No standard treatment for relapsed or refractory anaplastic large-cell lymphoma (ALCL) has been established. This study is a multicenter, open-label trial to examine the effectiveness and safety of transplantation with reduced-intensity conditioning (RIC) for patients under 20 years old with relapsed or refractory ALCL. We defined RIC as the administration of fludarabine (30 mg/m2/day) for five days plus melphalan (70 mg/m2/day) for two days and total body irradiation at 4 Gy, followed by allogeneic hematopoietic stem cell transplantation

    Increased Systemic Glucose Tolerance with Increased Muscle Glucose Uptake in Transgenic Mice Overexpressing RXRγ in Skeletal Muscle

    Get PDF
    BACKGROUND: Retinoid X receptor (RXR) γ is a nuclear receptor-type transcription factor expressed mostly in skeletal muscle, and regulated by nutritional conditions. Previously, we established transgenic mice overexpressing RXRγ in skeletal muscle (RXRγ mice), which showed lower blood glucose than the control mice. Here we investigated their glucose metabolism. METHODOLOGY/PRINCIPAL FINDINGS: RXRγ mice were subjected to glucose and insulin tolerance tests, and glucose transporter expression levels, hyperinsulinemic-euglycemic clamp and glucose uptake were analyzed. Microarray and bioinformatics analyses were done. The glucose tolerance test revealed higher glucose disposal in RXRγ mice than in control mice, but insulin tolerance test revealed no difference in the insulin-induced hypoglycemic response. In the hyperinsulinemic-euglycemic clamp study, the basal glucose disposal rate was higher in RXRγ mice than in control mice, indicating an insulin-independent increase in glucose uptake. There was no difference in the rate of glucose infusion needed to maintain euglycemia (glucose infusion rate) between the RXRγ and control mice, which is consistent with the result of the insulin tolerance test. Skeletal muscle from RXRγ mice showed increased Glut1 expression, with increased glucose uptake, in an insulin-independent manner. Moreover, we performed in vivo luciferase reporter analysis using Glut1 promoter (Glut1-Luc). Combination of RXRγ and PPARδ resulted in an increase in Glut1-Luc activity in skeletal muscle in vivo. Microarray data showed that RXRγ overexpression increased a diverse set of genes, including glucose metabolism genes, whose promoter contained putative PPAR-binding motifs. CONCLUSIONS/SIGNIFICANCE: Systemic glucose metabolism was increased in transgenic mice overexpressing RXRγ. The enhanced glucose tolerance in RXRγ mice may be mediated at least in part by increased Glut1 in skeletal muscle. These results show the importance of skeletal muscle gene regulation in systemic glucose metabolism. Increasing RXRγ expression may be a novel therapeutic strategy against type 2 diabetes

    向精神薬服用患者の突然死症例におけるカリウムイオンチャネルに関する分子生物学的解析:QT延長症候群関連遺伝子の多型が危険因子となり得るか?

    Get PDF
    Psychotropic drugs can pose the risk of acquired long QT syndrome (LQTS). Unexpected autopsy-negative sudden death in patients taking psychotropic drugs may be associated with prolonged QT intervals and life-threatening arrhythmias. We analyzed genes that encode for cardiac ion channels and potentially associated with LQTS, examining specifically the potassium channel genes KCNQ1 and KCNH2 in 10 cases of sudden death involving patients administered psychotropic medication in which autopsy findings identified no clear cause of death. We amplified and sequenced all exons of KCNQ1 and KCNH2, identifying G643S, missense polymorphism in KCNQ1, in 6 of the 10 cases. A study analysis indicated that only 11% of 381 healthy Japanese individuals carry this polymorphism. Reports of previous functional analyses indicate that the G643S polymorphism in the KCNQ1 potassium channel protein causes mild IKs channel dysfunction. Our present study suggests that administering psychotropic drug therapy to individuals carrying the G643S polymorphism may heighten the risk of prolonged QT intervals and life-threatening arrhythmias. Thus, screening for the G643S polymorphism before prescribing psychotropic drugs may help reduce the risk of unexpected sudden death2013博士(歯学)松本歯科大

    The Effect of Interim FDG-PET-guided Response-Adapted Therapy in Pediatric Patients with Hodgkin’s Lymphoma (HL-14) : Protocol for a Phase II Study

    Get PDF
    This trial enrolls patients with untreated Hodgkin’s lymphoma aged<20 years at diagnosis and examines the effects of omitting radiation therapy if the FDG-positron emission tomography (PET) findings after two completed cycles of combination chemotherapy are negative. It thereby aims to determine whether patients who truly require radiation therapy can be identified by FDG-PET. If so, this modality could be used to omit radiation therapy for all other patients, decreasing the risk of serious long-term complications without affecting survival rates. The outcomes of patients for whom FDG-PET is used to assess early treatment response will also be determined
    corecore