1,365 research outputs found
Activation of latent precursors in the hippocampus is dependent on long-term potentiation
The recent discovery of a large latent population of precursor cells in the dentate gyrus of adult mice led us to investigate whether activation of this population is regulated by synaptic activity, thereby explaining the observation that environmental signals can affect neurogenesis. Using a variety of stimulation protocols, we found that only a long-term potentiation (LTP)-inducing protocol activated the latent precursor pool, leading to increased neurogenesis in the dentate gyrus. LTP induced by high-frequency stimulation (HFS) of the perforant pathway in vivo produced a two-fold increase in the number of neurospheres cultured from the stimulated hippocampus, compared with the unstimulated hippocampus. No increase in neurosphere number or neurogenesis was observed when the HFS failed to induce LTP. These results show that LTP can activate latent neural precursor cells in the adult mouse dentate gyrus, thereby providing a direct mechanism for regulating activity-driven neurogenesis. In the future, it may be possible to utilize such learning- or stimulation-induced neurogenesis to overcome disorders characterized by neuronal loss
Estimation of fatigue exposure from magnetic coercivity
An investigation of the effects of fatigue on A533B steel under constant load amplitude is reported in this paper. It was found that the plastic strain of the sample accumulated logarithmically with the number of stress cycles after initial fatigue softening. Based on the fact that plastic strain is often linearly related to the coercivity of material, at least for small changes of H c , a phenomenological relationship has been developed and tested to correlate the number of stress cycles to this magnetic parameter. This result represents the first successful attempt to relate the fatigue exposure directly to a magnetic parameter
Ground-state electric quadrupole moment of 31Al
Ground-state electric quadrupole moment of 31Al (I =5/2+, T_1/2 = 644(25) ms)
has been measured by means of the beta-NMR spectroscopy using a spin-polarized
31Al beam produced in the projectile fragmentation reaction. The obtained Q
moment, |Q_exp(31Al)| = 112(32)emb, are in agreement with conventional shell
model calculations within the sd valence space. Previous result on the magnetic
moment also supports the validity of the sd model in this isotope, and thus it
is concluded that 31Al is located outside of the island of inversion.Comment: 5 page
Josephson Plasma Resonance in with Spatially Dependent Interlayer-Phase Coherence
We study the Josephson plasma resonance (JPR) in
BiSrCaCuO (BSCCO) with spatially dependent interlayer-phase
coherence (IPC). The half-irradiated BSCCO (HI-BSCCO), in which columnar
defects are introduced only in a half of the sample, shows several resonance
peaks, which are not simple superposition of the peaks in irradiated- and
pristine-parts. JPR in HI-BSCCO changes its character from irradiated- to
pristine-type at a crossover frequency (). We demonstrate that the
one-dimensional \LSGE, which takes into account the spatial dependence of IPC,
can reproduce most of the experimental findings including the presence of
.Comment: 4 figure
Campbell Penetration Depth of a Superconductor in the Critical State
The magnetic penetration depth was measured in the presence
of a slowly relaxing supercurrent, . In single crystal
below approximately 25 K, is
strongly hysteretic. We propose that the irreversibility arises from a shift of
the vortex position within its pinning well as changes. The Campbell length
depends upon the ratio where is the critical current defined
through the Labusch parameter. Similar effects were observed in other cuprates
and in an organic superconductor
Status of global fits to neutrino oscillations
We review the present status of global analyses of neutrino oscillations,
taking into account the most recent neutrino data including the latest KamLAND
and K2K updates presented at Neutrino2004, as well as state-of-the-art solar
and atmospheric neutrino flux calculations. We give the two-neutrino solar +
KamLAND results, as well as two-neutrino atmospheric + K2K oscillation regions,
discussing in each case the robustness of the oscillation interpretation
against departures from the Standard Solar Model and the possible existence of
non-standard neutrino physics. Furthermore, we give the best fit values and
allowed ranges of the three-flavour oscillation parameters from the current
worlds' global neutrino data sample and discuss in detail the status of the
small parameters \alpha \equiv \Dms/\Dma as well as ,
which characterize the strength of CP violating effects in neutrino
oscillations. We also update the degree of rejection of four-neutrino
interpretations of the LSND anomaly in view of the most recent developments.Comment: v6: In the last Appendix we provide updated neutrino oscillation
results which take into account the relevant oscillation data released by the
MINOS and KamLAND collaboration
- …