4 research outputs found

    Co-expressed recombinant human Translin-Trax complex binds DNA

    Get PDF
    AbstractTrax, expressed alone aggregates into insoluble complexes, whereas upon co-expression with Translin becomes readily soluble and forms a stable heteromeric complex (∼430kDa) containing both proteins at nearly equimolar ratio. Based on the subunit molecular weights, estimated by MALDI-TOF-MS, the purified complex appears to comprise of either an octameric Translin plus a hexameric Trax (calculated MW 420kDa) or a heptamer each of Trax and Translin (calculated MW 425kDa) or a hexameric Translin plus an octameric Trax (calculated MW 431kDa). The complex binds single-stranded/double-stranded DNA. ssDNA gel-shifted complex shows both proteins at nearly equimolar ratio, suggesting that Translin “chaperones” Trax and forms heteromeric complex that is DNA binding competent

    GTP-induced conformational changes in translin: a comparison between human and Drosophila proteins

    No full text
    Human translin is a conserved protein, unique in its ability to bind both RNA and DNA. Interestingly, GTP binding has been implicated as a regulator of RNA/DNA binding function of mouse translin (TB-RBP). We cloned and overexpressed the translin orthologue from Drosophila melanogaster and compared its DNA/RNA binding properties in relation to GTP effects with that of human protein. Human translin exhibits a stable octameric state and binds ssDNA/RNA/dsDNA targets, all of which get attenuated when GTP is added. Conversely, Drosophila translin exhibits a stable dimeric state that assembles into a suboctameric (tetramer/hexamer) form and fails to bind ssDNA and RNA targets. Interestingly enough, CD spectral analyses, partial protease digestion profile revealed GTP-specific conformational changes in human translin, whereas the same were largely missing in Drosophila protein. Isothermal calorimetry delineated specific heat changes associated with GTP binding in human translin, which invoked subunit “loosening” in its octamers; the same effect was absent in Drosophila protein. We propose that GTP acts as a specific molecular “switch” that modulates the nucleic acid binding function selectively in human translin, perhaps by affecting its octameric configuration
    corecore