968 research outputs found

    Site-selective 63^{63}Cu NMR study of the vortex cores of Tl2_{2}Ba2_{2}CuO6+δ_{6+\delta}

    Full text link
    We report site-selective 63^{63}Cu NMR studies of the vortex core states of an overdoped Tl2_{2}Ba2_{2}CuO6+δ_{6+\delta} with TcT_{c} = 85 K. We observed a relatively high density of low-energy quasi-particle excitations at the vortex cores in a magnetic field of 7.4847 T along the c axis, in contrast to YBa2_{2}Cu3_{3}O7−δ_{7-\delta}.Comment: 5 pages, 6 figures, submitted to J. Phys. Chem. Solids (QuB2006, Tokai

    Scattering of elastic waves by elastic spheres in a NaCl-type phononic crystal

    Full text link
    Based on the formalism developed by Psarobas et al [Phys. Rev. B 62, 278(2000)], which using the multiple scattering theory to calculate properties of simple phononic crystals, we propose a very simple method to study the NaCl-type phononic crystal. The NaCl-type phononic crystal consists of two kinds of non-overlapping elastic spheres with different mass densities, LaËŠmeL\acute{a}me coefficients and radius following the same periodicity of the ions in the real NaCl crystal. We focus on the (001) surface, and view the crystal as a sequence of planes of spheres, each plane of spheres has identical 2D periodicity. We obtained the complex band structure of the infinite crystal associated with this plane, and also calculated the transmission, reflection and absorption coefficients for an elastic wave (longitudinal or transverse) incident, at any angle, on a slab of the crystal of finite thickness.Comment: 15 pages, 6 figure

    Extended Dynamical Mean Field Theory Study of the Periodic Anderson Model

    Full text link
    We investigate the competition of the Kondo and the RKKY interactions in heavy fermion systems. We solve a periodic Anderson model using Extended Dynamical Mean Field Theory (EDMFT) with QMC. We monitor simultaneously the evolution of the electronic and magnetic properties. As the RKKY coupling increases the heavy fermion quasiparticle unbinds and a local moment forms. At a critical RKKY coupling there is an onset of magnetic order. Within EDMFT the two transitions occur at different points and the disapparence of the magnetism is not described by a local quantum critical point.Comment: 4 pages, 4 figure

    Vortex State of Tl2_2Ba2_2CuO6+δ_{6+\delta} via 205^{205}Tl NMR at 2 Tesla

    Full text link
    We report a 205^{205}Tl NMR study of vortex state for an aligned polycrystalline sample of an overdoped high-TcT_c superconductor Tl2_2Ba2_2CuO6+δ_{6+\delta} (Tc∼T_{c}\sim85 K) with magnetic field 2 T along the c axis. We observed an imperfect vortex lattice, so-called Bragg glass at TT=5 K, coexistence of vortex solid with liquid between 10 and 60 K, and vortex melting between 65 and 85 K. No evidence for local antiferromagnetic ordering at vortex cores was found for our sample.Comment: 4 pages with 5 figure

    A Hierarchically-Organized Phase Diagram near a Quantum Critical Point in URu2Si2

    Get PDF
    A comprehensive transport study, as a function of both temperature and magnetic field in continuous magnetic fields up to 45 T reveals that URu2Si2 possesses all the essential hallmarks of quantum criticality at temperatures above 5.5 K and fields around 38 T, but then collapses into multiple low temperature phases in a hierarchically-organized phase diagram as the temperature is reduced. Although certain generic features of the phase diagram are very similar to those in the cuprates and heavy fermion superconductors, the existence of multiple ordered hysteretic phases near the field-tuned quantum critical point is presently unique to URu2Si2. This finding suggests the existence of many competing order parameters separated by small energy difference in URu2Si2.Comment: 6 pages, twocolum texts, 3 coloured figure included, submitted to PR

    Diffractive arrays of gold nanoparticles near an interface: critical role of the substrate

    Get PDF
    The optical properties of periodic arrays of plasmonic nanoantennas are strongly affected by coherent multiple scattering in the plane of the array, which leads to sharp spectral resonances in both transmission and reflection when the wavelength is commensurate with the period. We demonstrate that the presence of a substrate (i.e., an asymmetric refractive-index environment) can inhibit long-range coupling between the particles and suppress lattice resonances, in agreement with recent experimental results. We find the substrate-to-superstrate index contrast and the distance between the array and the interface to be critical parameters determining the strength of diffractive coupling. Our rigorous electromagnetic simulations are well reproduced by a simple analytical model. These findings are important in the design of periodic structures and in the assessment of their optical resonances for potential use in sensing and other photonic technologies

    Heat Transport in a Strongly Overdoped Cuprate: Fermi Liquid and Pure d-wave BCS Superconductor

    Full text link
    The transport of heat and charge in the overdoped cuprate superconductor Tl_2Ba_2CuO_(6+delta) was measured down to low temperature. In the normal state, obtained by applying a magnetic field greater than the upper critical field, the Wiedemann-Franz law is verified to hold perfectly. In the superconducting state, a large residual linear term is observed in the thermal conductivity, in quantitative agreement with BCS theory for a d-wave superconductor. This is compelling evidence that the electrons in overdoped cuprates form a Fermi liquid, with no indication of spin-charge separation.Comment: 4 pages, 2 figures, published version, title changed, Phys. Rev. Lett. 89, 147003 (2002
    • …
    corecore