9 research outputs found

    GAPP: A Fast Profiler for Detecting Serialization Bottlenecks in Parallel Linux Applications

    Full text link
    We present a parallel profiling tool, GAPP, that identifies serialization bottlenecks in parallel Linux applications arising from load imbalance or contention for shared resources . It works by tracing kernel context switch events using kernel probes managed by the extended Berkeley Packet Filter (eBPF) framework. The overhead is thus extremely low (an average 4% run time overhead for the applications explored), the tool requires no program instrumentation and works for a variety of serialization bottlenecks. We evaluate GAPP using the Parsec3.0 benchmark suite and two large open-source projects: MySQL and Nektar++ (a spectral/hp element framework). We show that GAPP is able to reveal a wide range of bottleneck-related performance issues, for example arising from synchronization primitives, busy-wait loops, memory operations, thread imbalance and resource contention.Comment: 8 page

    NRG-Loops: Adjusting Power from within Applications

    No full text
    Abstract NRG-Loops are source-level abstractions that allow an application to dynamically manage its power and energy through adjustments to functionality, performance, and accuracy. The adjustments, which come in the form of truncated, adapted, or perforated loops, are conditionally enabled as runtime power and energy constraints dictate. NRG-Loops are portable across different hardware platforms and operating systems and are complementary to existing system-level efficiency techniques, such as DVFS and idle states. Using a prototype C library supported by commodity hardware energy meters (and with no modifications to the compiler or operating system), this paper demonstrates four NRG-Loop applications that in 2-6 lines of source code changes can save up to 55% power and 90% energy, resulting in up to 12X better energy efficiency than system-level techniques

    Parallel Scaling Properties from a Basic Block View

    No full text
    As software scalability lags behindhardware parallelism, understanding scaling behavior is more important than ever. This paper demonstrates how to use Parallel Block Vector (PBV) profiles to measure the scaling properties of multithreadedprograms from anewperspective: thebasic block’s view. Through this lens, we guide users through quick and simple methods to produce high-resolution application scaling analyses. This method requires no manual program modification, new hardware, or lengthy simulations, and capturestheimpactofarchitecture, operatingsystems, threading models, and inputs. We apply these techniques to a set of parallel benchmarks, and, as an example, demonstrate that when it comes to scaling, functions in an application do not behave monolithically

    "I'm sorry to hear that": finding bias in language models with a holistic descriptor dataset

    Full text link
    As language models grow in popularity, their biases across all possible markers of demographic identity should be measured and addressed in order to avoid perpetuating existing societal harms. Many datasets for measuring bias currently exist, but they are restricted in their coverage of demographic axes, and are commonly used with preset bias tests that presuppose which types of biases the models exhibit. In this work, we present a new, more inclusive dataset, HOLISTICBIAS, which consists of nearly 600 descriptor terms across 13 different demographic axes. HOLISTICBIAS was assembled in conversation with experts and community members with lived experience through a participatory process. We use these descriptors combinatorially in a set of bias measurement templates to produce over 450,000 unique sentence prompts, and we use these prompts to explore, identify, and reduce novel forms of bias in several generative models. We demonstrate that our dataset is highly efficacious for measuring previously unmeasurable biases in token likelihoods and generations from language models, as well as in an offensiveness classifier. We will invite additions and amendments to the dataset, and we hope it will help serve as a basis for easy-to-use and more standardized methods for evaluating bias in NLP models

    Harmony

    No full text
    corecore