10 research outputs found

    Incorporation of nitrogen in diamond films – a new way of tuning parameters for optical passive elements

    No full text
    This paper investigates the impact of nitrogen incorporation in diamond films for the construction of an interferometric sensor to measure displacement. Diamond films with different nitrogen levels (0–5%) were deposited on silicon substrates by microwave plasma enhanced chemical vapor deposition. The structural characteristics of these samples are characterized using scanning electron microscopy (SEM), atomic force microscopy (AFM), confocal micro-Raman spectroscopy, and electron energy loss spectroscopy (EELS). The homogeneous and continuous surface morphology of the films is observed through SEM. In the micro-Raman and electron energy loss spectroscopy studies, it is evident that there is a formation of sp2-bonded carbon phases due to the increase in the concentration of nitrogen. This investigation gives a strong basis for utilizing these diamond films as reflective layers in fiber-optic devices. The interferometric measurement setup is constructed as a Fabry-Pérot interferometer. The nitrogen incorporated films are proved to be useful as mirrors as they achieve a measurement signal with high contrast. The achieved visibility values for the investigated samples are higher than 94% in the range of 40–100 μm

    Nitrogen-Doped Diamond Film for Optical Investigation of Hemoglobin Concentration

    No full text
    In this work we present the fabrication and characterization of a diamond film which can be utilized in the construction of optical sensors for the investigation of biological samples. We produced a nitrogen-doped diamond (NDD) film using a microwave plasma enhanced chemical vapor deposition (MWPECVD) system. The NDD film was investigated with the use of scanning electron microscopy (SEM), atomic force microscopy (AFM) and Raman spectroscopy. The NDD film was used in the construction of the fiber optic sensor. This sensor is based on the Fabry–Pérot interferometer working in a reflective mode and the NDD film is utilized as a reflective layer of this interferometer. Application of the NDD film allowed us to obtain the sensor of hemoglobin concentration with linear work characteristics with a correlation coefficient (R2) equal to 0.988

    Enhanced Electron Field Emission Properties of Conducting Ultrananocrystalline Diamond Films after Cu and Au Ion Implantation

    No full text
    [[abstract]]The effects of Cu and Au ion implantation on the structural and electron field emission (EFE) properties of ultrananocrystalline diamond (UNCD) films were investigated. High electrical conductivity of 186 (Ω•cm)-1 and enhanced EFE properties with low turn-on field of 4.5 V/μm and high EFE current density of 6.70 mA/cm2 have been detected for Au-ion implanted UNCD (Au-UNCD) films that are superior to those of Cu-ion implanted UNCD (Cu-UNCD) ones. Transmission electron microscopic investigations revealed that Au-ion implantation induced a larger proportion of nanographitic phases at the grain boundaries for the Au-UNCD films in addition to the formation of uniformly distributed spherically shaped Au nanoparticles. In contrast, for Cu-UNCD films, plate-like Cu nanoparticles arranged in the row-like pattern were formed, and only a smaller proportion of nanographite phases along the grain boundaries was induced. From current imaging tunneling spectroscopy and local current–voltage curves of scanning tunneling spectroscopic measurements, it is observed that the electrons are dominantly emitted from the grain boundaries. Consequently, the presence of nanosized Au particles and the induction of abundant nanographitic phases in the grain boundaries of Au-UNCD films are believed to be the authentic factors, ensuing in high electrical conductivity and outstanding EFE properties of the films.[[countrycodes]]US

    Enhancement of the Electron Field Emission Properties of Ultrananocrystalline Diamond Films via Hydrogen Post-Treatment

    No full text
    [[abstract]]Enhanced electron field emission (EFE) properties due to hydrogen post-treatment at 600 °C have been observed for ultrananocrystalline diamond (UNCD) films. The EFE properties of H2-gas-treated UNCD films could be turned on at a low field of 5.3 V/μm, obtaining an EFE current density of 3.6 mA/cm2 at an applied field of 11.7 V/μm that is superior to those of UNCD films treated with H2 plasma. Transmission electron microscopic investigations revealed that H2 plasma treatment induced amorphous carbon (a-C) (and graphitic) phases only on the surface region of the UNCD films but the interior region of the UNCD films still contained very small amounts of a-C (and graphitic) grain boundary phases, resulting in a resistive transport path and inferior EFE properties. On the other hand, H2 gas treatment induces a-C (and graphitic) phases along the grain boundary throughout the thickness of the UNCD films, resulting in creation of conduction channels for the electrons to transport from the bottom of the films to the top and hence the superior EFE properties.[[journaltype]]國外[[booktype]]紙本[[countrycodes]]US

    Structural and electrical properties of conducting diamond nanowires

    No full text
    [[abstract]]Conducting diamond nanowires (DNWs) films have been synthesized by N₂-based microwave plasma enhanced chemical vapor deposition. The incorporation of nitrogen into DNWs films is examined by C 1s X-ray photoemission spectroscopy and morphology of DNWs is discerned using field-emission scanning electron microscopy and transmission electron microscopy (TEM). The electron diffraction pattern, the visible-Raman spectroscopy, and the near-edge X-ray absorption fine structure spectroscopy display the coexistence of sp³ diamond and sp² graphitic phases in DNWs films. In addition, the microstructure investigation, carried out by high-resolution TEM with Fourier transformed pattern, indicates diamond grains and graphitic grain boundaries on surface of DNWs. The same result is confirmed by scanning tunneling microscopy and scanning tunneling spectroscopy (STS). Furthermore, the STS spectra of current-voltage curves discover a high tunneling current at the position near the graphitic grain boundaries. These highly conducting regimes of grain boundaries form effective electron paths and its transport mechanism is explained by the three-dimensional (3D) Mott's variable range hopping in a wide temperature from 300 to 20 K. Interestingly, this specific feature of high conducting grain boundaries of DNWs demonstrates a high efficiency in field emission and pave a way to the next generation of high-definition flat panel displays or plasma devices.[[journaltype]]國外[[booktype]]紙本[[booktype]]電子版[[countrycodes]]US

    Bias-Enhanced Nucleation and Growth Processes for Ultrananocrystalline Diamond Films in Ar/CH4 Plasma and Their Enhanced Plasma Illumination Properties

    No full text
    [[abstract]]Microstructural evolution of ultrananocrystalline diamond (UNCD) films in the bias-enhanced nucleation and growth (BEN-BEG) process in CH4/Ar plasma is systematically investigated. The BEN-BEG UNCD films possess higher growth rate and better electron field emission (EFE) and plasma illumination (PI) properties than those of the films grown without bias. Transmission electron microscopy investigation reveals that the diamond grains are formed at the beginning of growth for films grown by applying the bias voltage, whereas the amorphous carbon forms first and needs more than 30 min for the formation of diamond grains for the films grown without bias. Moreover, the application of bias voltage stimulates the formation of the nanographite phases in the grain boundaries of the UNCD films such that the electrons can be transported easily along the graphite phases to the emitting surface, resulting in superior EFE properties and thus leading to better PI behavior. Interestingly, the 10 min grown UNCD films under bias offer the lowest turn-on field of 4.2 V/μm with the highest EFE current density of 2.6 mA/cm2 at an applied field of 7.85 V/μm. Such superior EFE properties attained for 10 min bias grown UNCD films leads to better plasma illumination (PI) properties, i.e., they show the smallest threshold field of 3300 V/cm with largest PI current density of 2.10 mA/cm2 at an applied field of 5750 V/cm.[[journaltype]]國外[[booktype]]紙本[[countrycodes]]US
    corecore