25 research outputs found

    Rapid HER2 cytologic fluorescence in situ hybridization for breast cancer using noncontact alternating current electric field mixing

    Get PDF
    Background: Human epidermal growth factor receptor 2-in situ hybridization (HER2-ISH) is widely approved for diagnostic, prognostic biomarker testing of formalin- fixed paraffin-embedded tissue blocks. However, cytologic ISH analysis has a potential advantage in tumor samples such as pleural effusion and ascites that are difficult to obtain the histological specimens. Our aim was to evaluate the clinical reliability of a novel rapid cytologic HER2 fluorescence ISH protocol (rapid-CytoFISH). Materials and Methods: Using a new device, we applied a high-voltage/frequency, noncontact alternating current electric field to tissue imprints and needle rinses, which mixed the probe within microdroplets as the voltage was switched on and off (AC mixing). Cytologic samples (n = 143) were collected from patients with immunohistochemically identified HER2 breast cancers. The specimens were then tested using standard dual-color ISH using formalin-fixed paraffin-embedded tissue (FFPE-tissue DISH) for HER2-targeted therapies, CytoFISH, and rapid-CytoFISH (completed within 4 h). Results: All 143 collected cytologic specimens (50 imprinted cytology specimens from resected tumors and 93 liquid-based cytology specimens from needle rinses) were suitable for FISH analysis. The HER2/chromosome enumeration probe (CEP) 17 ratios did not significantly differ between FFPE-tissue DISH and either CytoFISH protocol. Based on HER2 scoring criteria, we found 95.1% agreement between FFPEtissue DISH and CytoFISH (Cohen\u27s kappa coefficient = 0.771 and 95% confidence interval (CI): 0.614–0.927). Conclusion: CytoFISH could potentially serve as a clinical tool for prompt determination of HER2 status in breast cancer cytology. Rapid-CytoFISH with AC mixing will enable cancer diagnoses and HER2 status to be determined on the same day a patient comes to a clinic or hospital

    The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force

    Get PDF
    「コロナ制圧タスクフォース」COVID-19患者由来の血液細胞における遺伝子発現の網羅的解析 --重症度に応じた遺伝子発現の変化には、ヒトゲノム配列の個人差が影響する--. 京都大学プレスリリース. 2022-08-23.Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    Get PDF
    「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target
    corecore