5 research outputs found

    From black holes to their progenitors: A full population study in measuring black hole binary parameters from ringdown signals

    Full text link
    A perturbed black hole emits gravitational radiation, usually termed the ringdown signal, whose frequency and time-constant depends on the mass and spin of the black hole. I investigate the case of a binary black hole merger resulting from two initially non-spinning black holes of various mass ratios, in quasi-circular orbits. The observed ringdown signal will be determined, among other things, by the black hole's spin-axis orientation with respect to Earth, its sky position and polarization angle - parameters which can take any values in a particular observation. I have carried out a statistical analysis of the effect of these variables, focusing on detection and measurement of the multimode ringdown signals using the reformulated European LISA mission, Next Gravitational-Wave Observatory, NGO, the third generation ground-based observatory, Einstein Telescope and the advanced era detector, aLIGO. To the extent possible I have discussed the effect of these results on plausible event rates, as well as astrophysical implications concerning the formation and growth of supermassive and intermediate mass black holes.Comment: 12 pages, 9 figures, accepted for publication in Amaldi 9 & NRDA Proceedings, Journal of Physics: Conference Serie

    Is black-hole ringdown a memory of its progenitor?

    Full text link
    We have performed an extensive numerical study of coalescing black-hole binaries to understand the gravitational-wave spectrum of quasi-normal modes excited in the merged black hole. Remarkably, we find that the masses and spins of the progenitor are clearly encoded in the mode spectrum of the ringdown signal. Some of the mode amplitudes carry the signature of the binary's mass ratio, while others depend critically on the spins. Simulations of precessing binaries suggest that our results carry over to generic systems. Using Bayesian inference, we demonstrate that it is possible to accurately measure the mass ratio and a proper combination of spins even when the binary is itself invisible to a detector. Using a mapping of the binary masses and spins to the final black hole spin, allows us to further extract the spin components of the progenitor. Our results could have tremendous implications for gravitational astronomy by facilitating novel tests of general relativity using merging black holes.Comment: 5 pages, 3 figures, 1 table, accepted for publication in Physical Review Letter

    Gravitational-wave radiation from merging binary black holes and Supernovae

    Get PDF
    This thesis is conceptually divided into two parts. The first and main part concerns the generation of gravitational radiation that is emitted from merging black-hole binary systems using Numerical Relativity methods. The second part presents the methodology of the search for gravitational-wave bursts that are emitted in core-collapse Supernovae. My approach to Numerical Relativity is to utilise the late-time gravitational radiation of merging binary black holes to extract key astrophysical parameters from such systems via standard parameter estimation techniques. I begin with an introductory chapter that outlines the standard theories of stationary and perturbed black holes. In addition, up-to-date techniques in performing binary black hole simulations, the current and near-future status of the global network of gravitational-wave detectors, as well as the most promising gravitational-wave sources. I conclude the chapter with elements on parameter estimation techniques, such as Bayesian analysis and the Fisher information matrix. In Chapter 2, I discuss detection issues and parameter estimation results from the late-time radiation of colliding non-spinning black holes in quasi-circular orbits, and propose a practical test of General Relativity, as well as of the nature of the merged compact object. Chapter 3 involves similar parameter extraction calculations, but involves a more realistic approach, whereby the effect of the various angular parameters on parameter estimation is considered, placing an emphasis on the actual science benefit from measuring the gravitational radiation from perturbed intermediate and supermassive black holes. In Chapter 4 we present the results of an extensive Numerical Relativity study of merging spinning black hole binaries and argue that the mass ratio and individual spins of a non-precessing progenitor binary can be measured solely by observing the late-time radiation. Chapter 5 presents the methodology in carrying out searches for gravitationalwave bursts (GWB) from core-collapse Supernovae with a dedicated for GWB searches pipeline (X-Pipeline) and presents the sensitivity performance of XPipeline in detecting GWBs associated with certain Supernova candidates during the two most recent LIGO-Virgo-GEO Science Runs

    Black-hole hair loss: learning about binary progenitors from ringdown signals

    Full text link
    Perturbed Kerr black holes emit gravitational radiation, which (for the practical purposes of gravitational-wave astronomy) consists of a superposition of damped sinusoids termed quasi-normal modes. The frequencies and time-constants of the modes depend only on the mass and spin of the black hole - a consequence of the no-hair theorem. It has been proposed that a measurement of two or more quasi-normal modes could be used to confirm that the source is a black hole and to test if general relativity continues to hold in ultra-strong gravitational fields. In this paper we propose a practical approach to testing general relativity with quasi-normal modes. We will also argue that the relative amplitudes of the various quasi-normal modes encode important information about the origin of the perturbation that caused them. This helps in inferring the nature of the perturbation from an observation of the emitted quasi-normal modes. In particular, we will show that the relative amplitudes of the different quasi-normal modes emitted in the process of the merger of a pair of nonspinning black holes can be used to measure the component masses of the progenitor binary.Comment: 24 pages, 9 figures, 4 tables, accepted for publication in Physical Review
    corecore