6 research outputs found

    ARBITRARY HYBRID TURBULENCE MODELING APPROACH FOR HIGH-FIDELITY NREL PHASE VIWIND TURBINE CFD SIMULATION

    Get PDF
    Today, growth in renewable energy is increasing, and wind energy is one of the key renewable energy sources which is helping to reduce carbon emissions and build a more sustainable world. Developed countries and worldwide organizations are investing in technology and industrial application development. However, extensive experiments using wind turbines are expensive, and numerical simulations are a cheaper alternative for advanced analysis of wind turbines. The aerodynamic properties of wind turbines can be analyzed and optimized using CFD tools. Currently, there is a general lack of available high-fidelity analysis for the wind turbine design community. This study aims to fill this urgent gap. In this paper, an arbitrary hybrid turbulence model (AHTM) was implemented in the open-source code OpenFOAM and compared with the traditional URANS model using the NREL Phase VI wind turbine as a benchmark case. It was found that the AHTM model gives more accurate results than the traditional URANS model. Furthermore, the results of the VLES and URANS models can be improved by improving the mesh quality for usage of higher-order schemes and taking into consideration aeroelastic properties of the wind turbine, which will pave the way for high-fidelity concurrent multidisciplinary design optimization of wind turbines

    Arbitrary Hybrid Turbulence Modeling Approach for High-Fidelity NREL Phase VI Wind Turbine CFD Simulation

    No full text
    Today, growth in renewable energy is increasing, and wind energy is one of the key renewable energy sources which is helping to reduce carbon emissions and build a more sustainable world. Developed countries and worldwide organizations are investing in technology and industrial application development. However, extensive experiments using wind turbines are expensive, and numerical simulations are a cheaper alternative for advanced analysis of wind turbines. The aerodynamic properties of wind turbines can be analyzed and optimized using CFD tools. Currently, there is a general lack of available high-fidelity analysis for the wind turbine design community. This study aims to fill this urgent gap. In this paper, an arbitrary hybrid turbulence model (AHTM) was implemented in the open-source code OpenFOAM and compared with the traditional URANS model using the NREL Phase VI wind turbine as a benchmark case. It was found that the AHTM model gives more accurate results than the traditional URANS model. Furthermore, the results of the VLES and URANS models can be improved by improving the mesh quality for usage of higher-order schemes and taking into consideration aeroelastic properties of the wind turbine, which will pave the way for high-fidelity concurrent multidisciplinary design optimization of wind turbines

    FLUID STRUCTURE INTERACTION (FSI) ANALYSIS OF HORIZONTAL AXIS WIND TURBINES (HAWTS)

    No full text
    Today, growth in renewable energy is increasing and wind energy is one of the key renewable energy sources which is helping to reduce carbon emissions and build a better sustainable world. Developed countries and worldwide organizations are investing in technology and industrial application development. However, extensive experiments over wind turbines are expensive, and numerical simulations are a cheaper alternative way for advanced analysis over wind turbines. The aerodynamic and structural properties of the wind turbines can be analysed, validated, and optimised using CFD and FSI tools. In this paper, the NREL Phase VI wind turbine aerodynamic and aeroelastic properties were analysed using OpenFOAM. In addition, an arbitrary hybrid turbulence model (VLES) was implemented and compared with the traditional RANS model. Only two different wind speeds were used, and it was found that the RANS model gives accurate results than VLES for low wind speed. Furthermore, the results of the VLES model can be improved by using higher-order schemes and high-resolution mesh. One Way FSI simulation was performed but the results were inaccurate due to the limitations of the extended OpenFOAM version

    Study of Factors Affecting the Copper Ore Leaching Process

    No full text
    This paper provides an overview of hydrometallurgical copper extraction studies in which liquid extraction technology has been used with four copper deposits of different compositions. The sulfuric acid consumption rate and copper extraction efficiency, which are dependent on the initial content and forms of calcium compounds and other impurities in ore samples, were calculated, and the results are presented herein. It was established that during the leaching process, silicate compounds of alkaline earth metals, in addition to calcium and magnesium carbonate compounds, would affect the levels of sulfuric acid consumption, thereby actively lowering the acidity of the environment. Moreover, these compounds could partially sorb copper ions from sulfuric acid leaching solutions. Thus, the analysis of waste ore samples showed that residual copper is mainly contained in the form of complex silicate complexes. The presence of divalent iron compounds in the composition from one of the deposits also allowed us to perform a biochemical leaching experiment with preliminary oxidation using an Acidithiobacillus ferrooxidans bacterial culture adapted to the ore composition. The use of this biochemical method in the copper leaching process resulted in a significant reduction in sulfuric acid consumption, by 40%, and a copper recovery rate of 87.2%

    An Arbitrary Hybrid Turbulence Modeling Approach for Efficient and Accurate Automotive Aerodynamic Analysis and Design Optimization

    No full text
    The demand in solving complex turbulent fluid flows has been growing rapidly in the automotive industry for the last decade as engineers strive to design better vehicles to improve drag coefficients, noise levels and drivability. This paper presents the implementation of an arbitrary hybrid turbulence modeling (AHTM) approach in OpenFOAM for the efficient simulation of common automotive aerodynamics with unsteady turbulent separated flows such as the Kelvin–Helmholtz effect, which can also be used as an efficient part of aerodynamic design optimization (ADO) tools. This AHTM approach is based on the concept of Very Large Eddy Simulation (VLES), which can arbitrarily combine RANS, URANS, LES and DNS turbulence models in a single flow field depending on the local mesh refinement. As a result, the design engineer can take advantage of this unique and highly flexible approach to tailor his grid according to his design and resolution requirements in different areas of the flow field over the car body without sacrificing accuracy and efficiency at the same time. This paper presents the details of the implementation and careful validation of the AHTM method using the standard benchmark case of the Ahmed body, in comparison with some other existing models, such as RANS, URANS, DES and LES, which shows VLES to be the most accurate among the five examined. Furthermore, the results of this study demonstrate that the AHTM approach has the flexibility, efficiency and accuracy to be integrated with ADO tools for engineering design in the automotive industry. The approach can also be used for the detailed study of highly complex turbulent phenomena such as the Kelvin–Helmholtz instability commonly found in automotive aerodynamics. Currently, the AHTM implementation is being integrated with the DAFoam for gradient-based multi-point ADO using an efficient adjoint solver based on a Sparse Nonlinear optimizer (SNOPT)

    HIGH-FIDELITY 2-WAY FSI SIMULATION OF AWIND TURBINE USING FULLY STRUCTURED MULTIBLOCK MESHES IN OPENFOAM FOR ACCURATE AERO-ELASTIC ANALYSIS

    No full text
    With increased interest in renewable energy, the power capacity of wind turbines is constantly increasing, which leads to increased rotor sizes. With ever larger rotor diameters, the complex and non-linear fluid-structure interaction (FSI) effects on wind turbine aerodynamic performances become significant, which can be fully studied using hi-fidelity 2-way FSI simulation. In this study, a two-way FSI model is developed and implemented in Openfoam to investigate the FSI effects on the NREL Phase VI wind turbine. The fully structured multiblock (MB) mesh method is used for the fluid and solid domains to achieve good accuracy. A coupling method based on the ALE is developed to ensure rotation and deformation can happen simultaneously and smoothly. The simulation results show that hi-fidelity CFD (Computational Fluid Dynamics) and CSD (Computational Structural Dynamics) -based 2-way FSI simulation provides high accurate results for wind turbine simulation and multi-disciplinary design optimization (MDO)
    corecore