903 research outputs found
Improvements in diagnosis have changed the incidence of histological types in advanced gastric cancer.
The data on 912 patients with early cancer and 1245 with advanced cancer who were seen between 1971 and 1990 were compared. The incidence of undifferentiated-type cancer increased significantly in patients with advanced gastric cancer, but not in patients with early gastric cancer. When the histological types were compared with regard to sex, age and location in patients with early gastric cancer the undifferentiated type was found to increase only in males, while in patients with advanced gastric cancer the undifferentiated type increased in both sexes as well as in younger patients and in both the upper and middle third of the stomach. These differences in the trends between early and advanced cancers are probably due to the different degrees of diagnostic accuracy for the early detection of histological types
Importance of the V 3d-O 2p hybridization in the Mott-Hubbard material V2O3
We studied the changes in the electronic structure of V2O3 using a cluster
model. The calculations included fluctuations from the coherent band in the
metallic phase, and non-local Mott-Hubbard fluctuations in the insulating
phase. The incoherent structure is mostly related to the usual ligand screening
channel (3d2L). The coherent peak in the metallic phase corresponds to coherent
band fluctuations (3d2C). The non-local screened state in the insulating phase
(3d2D) appears at higher energies, opening the band gap. The photon energy
dependence of the spectra is mostly due to the relative V 3d and O 2p cross
sections. The present model reproduces also the observed changes in the V 1s
core-level spectra. The above results suggest that the Mott-Hubbard transition
in V2O3 requires a multi-band model.Comment: 4 pages, 4 figure
Layer dependent band dispersion and correlations using tunable Soft X-ray ARPES
Soft X-ray Angle-Resolved Photoemission Spectroscopy is applied to study
in-plane band dispersions of Nickel as a function of probing depth. Photon
energies between 190 and 780 eV were used to effectively probe up to 3-7
layers. The results show layer dependent band dispersion of the Delta_2
minority-spin band which crosses the Fermi level in 3 or more layers, in
contrast to known top 1-2 layers dispersion obtained using ultra-violet rays.
The layer dependence corresponds to an increased value of exchange splitting
and suggests reduced correlation effects in the bulk compared to the surface.Comment: 7 pages, 3 figures Revised text and figur
Temperature dependent Eu 3d-4f X-ray Absorption and Resonant Photoemission Study of the Valence Transition in
We study the mixed valence transition ( 80 K) in
EuNi(SiGe) using Eu 3 X-ray absorption
spectroscopy (XAS) and resonant photoemission spectroscopy (RESPES). The
Eu and Eu main peaks show a giant resonance and the spectral
features match very well with atomic multiplet calculations. The spectra show
dramatic temperature ()-dependent changes over large energies (10 eV)
in RESPES and XAS. The observed non-integral mean valencies of 2.35
0.03 ( = 120 K) and 2.70 0.03 ( = 40 K) indicate homogeneous
mixed valence above and below . The redistribution between
Eu+ and Eu+ states is attributed to
a hybridization change coupled to a Kondo-like volume collapse.Comment: 4 pages, 3 figure
Bulk screening in core level photoemission from Mott-Hubbard and Charge-Transfer systems
We report bulk-sensitive hard X-ray ( = 5.95 KeV) core level
photoemission spectroscopy (PES) of single crystal VCrO
and the high- cuprate BiSrCaCuO (Bi2212).
VCrO exhibits low binding energy "satellites" to the V
"main lines" in the metallic phase, which are suppressed in the
antiferromagnetic insulator phase. In contrast, the Cu spectra of Bi2212
do not show temperature dependent features, but a comparison with soft X-ray
PES indicates a large increase in the "satellites" or weight
in the bulk. Cluster model calculations, including full multiplet structure and
a screening channel derived from the coherent band at the Fermi energy, give
very satisfactory agreement with experiments
Spin-polarized surface state of MnSb(0001)
Knowledge of the spin-dependent electronic structure at surfaces and interfaces plays an increasingly important role when assessing possible use of novel magnetic materials for spintronic applications. It is shown that spin- and angle-resolved photoelectron spectroscopy together with ab initio electronic structure methods provides a full characterization of the surface electronic structure of ferromagnetic MnSb(0 0 0 1). Two different surface reconstructions have been compared in spin- and angle-resolved valence-band photoemission. For annealing at elevated temperatures, the ( 1 x 1)-structure transforms into 2 x 2 and a majority-spin peak appears at - 1.7 eV inside a majority-spin bulk band gap at the surface Brillouin zone centre. Its sensitivity to oxygen supports an interpretation as magnetic compound surface state. Local spin density calculations predict at the same energy (- 1.75 eV) a prominent d(z)2 surface state of majority spin for ( 1 x 1)- Mn terminated MnSb(0 0 0 1) but no such feature for ( 1 x 1)-Sb termination. The calculation shows that neither the bulk nor the surface is half-metallic, in agreement with the expectation for the hexagonal NiAs structure
Impact Ionization in ZnS
The impact ionization rate and its orientation dependence in k space is
calculated for ZnS. The numerical results indicate a strong correlation to the
band structure. The use of a q-dependent screening function for the Coulomb
interaction between conduction and valence electrons is found to be essential.
A simple fit formula is presented for easy calculation of the energy dependent
transition rate.Comment: 9 pages LaTeX file, 3 EPS-figures (use psfig.sty), accepted for
publication in PRB as brief Report (LaTeX source replaces raw-postscript
file
List augmentation with model based multiple imputation: a case study using a mixed-outcome factor model
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/73954/1/1467-9574.00220.pd
Bulk Electronic structure of NaCoO.1.3HO
High-energy (h = 5.95 keV) synchrotron Photoemission spectroscopy (PES)
is used to study bulk electronic structure of NaCoO.1.3HO,
the layered superconductor. In contrast to 3-dimensional doped Co oxides, Co
core level spectra show well-separated Co and Co ions.
Cluster calculations suggest low spin Co and Co character, and a
moderate on-site Coulomb correlation energy U3-5.5 eV. Photon
dependent valence band PES identifies Co and O derived
states, in near agreement with band structure calculations.Comment: 4 pages 4 figures Revised text added referenc
- …