7 research outputs found
Lateral prefrontal cortex lesion impairs regulation of internally and externally directed attention.
Lateral prefrontal cortex lesion impairs regulation of internally and externally directed attention
Our capacity to flexibly shift between internally and externally directed attention is crucial for successful performance of activities in our daily lives. Neuroimaging studies have implicated the lateral prefrontal cortex (LPFC) in both internally directed processes, including autobiographical memory retrieval and future planning, and externally directed processes, including cognitive control and selective attention. However, the causal involvement of the LPFC in regulating internally directed attention states is unknown. The current study recorded scalp EEG from patients with LPFC lesions and healthy controls as they performed an attention task that instructed them to direct their attention either to the external environment or their internal milieu. We compared frontocentral midline theta and posterior alpha between externally and internally directed attention states. While healthy controls showed increased theta power during externally directed attention and increased alpha power during internally directed attention, LPFC patients revealed no differences between the two attention states in either electrophysiological measure in the analyzed time windows. These findings provide evidence that damage to the LPFC leads to dysregulation of both types of attention, establishing the important role of LPFC in supporting sustained periods of internally and externally directed attention
Top-Down Attentional Modulation in Human Frontal Cortex: Differential Engagement during External and Internal Attention.
Decades of electrophysiological research on top-down control converge on the role of the lateral frontal cortex in facilitating attention to behaviorally relevant external inputs. However, the involvement of frontal cortex in the top-down control of attention directed to the external versus internal environment remains poorly understood. To address this, we recorded intracranial electrocorticography while subjects directed their attention externally to tones and responded to infrequent target tones, or internally to their own thoughts while ignoring the tones. Our analyses focused on frontal and temporal cortices. We first computed the target effect, as indexed by the difference in high frequency activity (70-150 Hz) between target and standard tones. Importantly, we then compared the target effect between external and internal attention, reflecting a top-down attentional effect elicited by task demands, in each region of interest. Both frontal and temporal cortices showed target effects during external and internal attention, suggesting this effect is present irrespective of attention states. However, only the frontal cortex showed an enhanced target effect during external relative to internal attention. These findings provide electrophysiological evidence for top-down attentional modulation in the lateral frontal cortex, revealing preferential engagement with external attention
Systematic comparison between a wireless EEG system with dry electrodes and a wired EEG system with wet electrodes
Recent advances in dry electrodes technology have facilitated the recording of EEG in situations not previously possible, thanks to the relatively swift electrode preparation and avoidance of applying gel to subject's hair. However, to become a true alternative, these systems should be compared to state-of-the-art wet EEG systems commonly used in clinical or research applications. In our study, we conducted a systematic comparison of electrodes application speed, subject comfort, and most critically electrophysiological signal quality between the conventional and wired Biosemi EEG system using wet active electrodes and the compact and wireless F1 EEG system consisting of dry passive electrodes. All subjects (n = 27) participated in two recording sessions on separate days, one with the wet EEG system and one with the dry EEG system, in which the session order was counterbalanced across subjects. In each session, we recorded their EEG during separate rest periods with eyes open and closed followed by two versions of a serial visual presentation target detection task. Each task component allows for a neural measure reflecting different characteristics of the data, including spectral power in canonical low frequency bands, event-related potential components (specifically, the P3b), and single trial classification based on machine learning. The performance across the two systems was similar in most measures, including the P3b amplitude and topography, as well as low frequency (theta, alpha, and beta) spectral power at rest. Both EEG systems performed well above chance in the classification analysis, with a marginal advantage of the wet system over the dry. Critically, all aforementioned electrophysiological metrics showed significant positive correlations (r = 0.54-0.89) between the two EEG systems. This multitude of measures provides a comprehensive comparison that captures different aspects of EEG data, including temporal precision, frequency domain as well as multivariate patterns of activity. Taken together, our results indicate that the dry EEG system used in this experiment can effectively record electrophysiological measures commonly used across the research and clinical contexts with comparable quality to the conventional wet EEG system
Recommended from our members
Gender bias in academia: A lifetime problem that needs solutions
Despite increased awareness of the lack of gender equity in academia and a growing number of initiatives to address issues of diversity, change is slow, and inequalities remain. A major source of inequity is gender bias, which has a substantial negative impact on the careers, work-life balance, and mental health of underrepresented groups in science. Here, we argue that gender bias is not a single problem but manifests as a collection of distinct issues that impact researchers' lives. We disentangle these facets and propose concrete solutions that can be adopted by individuals, academic institutions, and society