51 research outputs found
Boundary effects on the dynamics of chains of coupled oscillators
We study the dynamics of a chain of coupled particles subjected to a
restoring force (Klein-Gordon lattice) in the cases of either periodic or
Dirichlet boundary conditions. Precisely, we prove that, when the initial data
are of small amplitude and have long wavelength, the main part of the solution
is interpolated by a solution of the nonlinear Schr\"odinger equation, which in
turn has the property that its Fourier coefficients decay exponentially. The
first order correction to the solution has Fourier coefficients that decay
exponentially in the periodic case, but only as a power in the Dirichlet case.
In particular our result allows one to explain the numerical computations of
the paper \cite{BMP07}
Perturbative analysis of wave interactions in nonlinear systems
This work proposes a new way for handling obstacles to asymptotic
integrability in perturbed nonlinear PDEs within the method of Normal Forms -
NF - for the case of multi-wave solutions. Instead of including the whole
obstacle in the NF, only its resonant part is included, and the remainder is
assigned to the homological equation. This leaves the NF intergable and its
solutons retain the character of the solutions of the unperturbed equation. We
exploit the freedom in the expansion to construct canonical obstacles which are
confined to te interaction region of the waves. Fo soliton solutions, e.g., in
the KdV equation, the interaction region is a finite domain around the origin;
the canonical obstacles then do not generate secular terms in the homological
equation. When the interaction region is infifnite, or semi-infinite, e.g., in
wave-front solutions of the Burgers equation, the obstacles may contain
resonant terms. The obstacles generate waves of a new type, which cannot be
written as functionals of the solutions of the NF. When an obstacle contributes
a resonant term to the NF, this leads to a non-standard update of th wave
velocity.Comment: 13 pages, including 6 figure
Linear superposition in nonlinear wave dynamics
We study nonlinear dispersive wave systems described by hyperbolic PDE's in
R^{d} and difference equations on the lattice Z^{d}. The systems involve two
small parameters: one is the ratio of the slow and the fast time scales, and
another one is the ratio of the small and the large space scales. We show that
a wide class of such systems, including nonlinear Schrodinger and Maxwell
equations, Fermi-Pasta-Ulam model and many other not completely integrable
systems, satisfy a superposition principle. The principle essentially states
that if a nonlinear evolution of a wave starts initially as a sum of generic
wavepackets (defined as almost monochromatic waves), then this wave with a high
accuracy remains a sum of separate wavepacket waves undergoing independent
nonlinear evolution. The time intervals for which the evolution is considered
are long enough to observe fully developed nonlinear phenomena for involved
wavepackets. In particular, our approach provides a simple justification for
numerically observed effect of almost non-interaction of solitons passing
through each other without any recourse to the complete integrability. Our
analysis does not rely on any ansatz or common asymptotic expansions with
respect to the two small parameters but it uses rather explicit and
constructive representation for solutions as functions of the initial data in
the form of functional analytic series.Comment: New introduction written, style changed, references added and typos
correcte
Autoresonance in a Dissipative System
We study the autoresonant solution of Duffing's equation in the presence of
dissipation. This solution is proved to be an attracting set. We evaluate the
maximal amplitude of the autoresonant solution and the time of transition from
autoresonant growth of the amplitude to the mode of fast oscillations.
Analytical results are illustrated by numerical simulations.Comment: 22 pages, 3 figure
On the validity of mean-field amplitude equations for counterpropagating wavetrains
We rigorously establish the validity of the equations describing the
evolution of one-dimensional long wavelength modulations of counterpropagating
wavetrains for a hyperbolic model equation, namely the sine-Gordon equation. We
consider both periodic amplitude functions and localized wavepackets. For the
localized case, the wavetrains are completely decoupled at leading order, while
in the periodic case the amplitude equations take the form of mean-field
(nonlocal) Schr\"odinger equations rather than locally coupled partial
differential equations. The origin of this weakened coupling is traced to a
hidden translation symmetry in the linear problem, which is related to the
existence of a characteristic frame traveling at the group velocity of each
wavetrain. It is proved that solutions to the amplitude equations dominate the
dynamics of the governing equations on asymptotically long time scales. While
the details of the discussion are restricted to the class of model equations
having a leading cubic nonlinearity, the results strongly indicate that
mean-field evolution equations are generic for bimodal disturbances in
dispersive systems with \O(1) group velocity.Comment: 16 pages, uuencoded, tar-compressed Postscript fil
Approximate perturbed direct homotopy reduction method: infinite series reductions to two perturbed mKdV equations
An approximate perturbed direct homotopy reduction method is proposed and
applied to two perturbed modified Korteweg-de Vries (mKdV) equations with
fourth order dispersion and second order dissipation. The similarity reduction
equations are derived to arbitrary orders. The method is valid not only for
single soliton solution but also for the Painlev\'e II waves and periodic waves
expressed by Jacobi elliptic functions for both fourth order dispersion and
second order dissipation. The method is valid also for strong perturbations.Comment: 8 pages, 1 figur
Justification of an asymptotic expansion at infinity
A family of asymptotic solutions at infinity for the system of ordinary
differential equations is considered. Existence of exact solutions which have
these asymptotics is proved.Comment: 8 page
- …