3 research outputs found

    Chimerization of antibodies by isolation of rearranged genomic variable regions by the polymerase chain reaction

    Get PDF
    We describe a new method for amplification, by polymerase chain reaction (PCR), of rearranged segments encoding the variable part of light and heavy chains of an antibody (Ab) from the chromosomal DNA of hybridoma cells for the chimerization ofAbs. A fundamental prerequisite for this is the knowledge ofthe exact sequences in the 5’-untranslated region of light and heavy chain mRNA, and of the joining segment used for rearrangement. This allows the design of nondegenerated oligodeoxyribonucleotides for PCR. The primer design permits directional cloning of the amplified, promoterless fragments into cassette vectors, in which they will be linked to the appropriate human constant domains and immunoglobulin (Ig) promoter/enhancer elements. The method is illustrated for chimerization of an Ab directed against the human T-lymphocyte antigen, CD4. The chimerized Ab is secreted in abundant quantities after transfection of the engineered plasmids into non-Ig-producing myeloma cells

    Chimerization of antibodies by isolation of rearranged genomic variable regions by the polymerase chain reaction

    Get PDF
    We describe a new method for amplification, by polymerase chain reaction (PCR), of rearranged segments encoding the variable part of light and heavy chains of an antibody (Ab) from the chromosomal DNA of hybridoma cells for the chimerization ofAbs. A fundamental prerequisite for this is the knowledge ofthe exact sequences in the 5’-untranslated region of light and heavy chain mRNA, and of the joining segment used for rearrangement. This allows the design of nondegenerated oligodeoxyribonucleotides for PCR. The primer design permits directional cloning of the amplified, promoterless fragments into cassette vectors, in which they will be linked to the appropriate human constant domains and immunoglobulin (Ig) promoter/enhancer elements. The method is illustrated for chimerization of an Ab directed against the human T-lymphocyte antigen, CD4. The chimerized Ab is secreted in abundant quantities after transfection of the engineered plasmids into non-Ig-producing myeloma cells

    Combinatorial functions of two chimeric antibodies directed to human CD4 and one directed to the a-chain of the human interleukin-2 receptor

    Get PDF
    The general feasibility of chimerization of monoclonal antibodies (mAbs) has already been shown for a large number of them. In order to evaluate in vitro parameters relevant to immunosuppressive therapy, we have chimerized and synthesized two anti-CD4 mAbs recognizing two different epitopes on the human T-lymphocyte antigen, CD4. The chimerized mAbs are produced at levels corresponding to those of the original hybridoma cell lines. With respect to activation of human complement, the individual Abs are negative; however, when used in combination, complement activation was performed. When applied in combination, they were found to modulate the CD4 antigen, whereas the individual mAb do not display this property. Individually they mediate an up to 60% inhibition of the mixed lymphocyte reaction (MLR). However, by combination of an anti-CD4 mAb with one directed against the a-chain of the human IL2 receptor, nearly 100% inhibition of the MLR was achieved, even with reduced dosage of the mAbs. Our data suggest that the combination of an anti-CD4 mAb and an anti-IL2Rcc chain mAb is more effective with respect to immunosuppression than each mAb by itself, indicating that this mAb cocktail could be a new strategy for immunosuppressive therapy
    corecore