67 research outputs found

    Off-pump epicardial ventricular reconstruction restores left ventricular twist and reverses remodeling in an ovine anteroapical aneurysm model

    Get PDF
    ObjectiveThe loss of normal apical rotation is associated with left ventricular (LV) remodeling and systolic dysfunction in patients with congestive heart failure after myocardial infarction. The objective of the present study was to evaluate the effect of epicardial ventricular reconstruction, an off-pump, less-invasive surgical reshaping technique, on myocardial strain, LV twist, and the potential alteration of myocardial fiber orientation in an ovine model of LV anteroapical aneurysm.MethodsLV anteroapical myocardial infarction was induced by coil embolization of the left anterior descending artery. Eight weeks after occlusion, epicardial ventricular reconstruction was performed using left thoracotomy under fluoroscopic guidance in 8 sheep to completely exclude the scar. The peak systolic longitudinal/circumferential strains and LV twist were evaluated using speckle tracking echocardiography before (baseline), after device implantation, and at 6 weeks of follow-up.ResultsEpicardial ventricular reconstruction was completed in all sheep without any complications. Immediately after device implantation, LV twist significantly increased (4.18 ± 1.40 vs baseline 1.97 ± 1.92; P = .02). The ejection fraction had increased 17% and LV end-systolic volume had decreased 40%. The global longitudinal strain increased from −5.3% to −9.1% (P < .05). Circumferential strain increased in both middle and apical LV segments, with the greatest improvement in the inferior lateral wall (from −11.4% to −20.6%, P < .001). These effects were maintained ≄6 weeks after device implantation without redilation.ConclusionsLess invasive than alternative therapies, epicardial ventricular reconstruction on the off-pump beating heart can restore LV twist and systolic strain and reverse LV remodeling in an ovine anteroapical aneurysm model

    Flavour physics of the RS model with KK masses reachable at LHC

    Full text link
    The version of the higher-dimensional Randall-Sundrum (RS) model with matter in the bulk, which addresses the gauge hierarchy problem, has additional attractive features. In particular, it provides an intrinsic geometrical mechanism that can explain the origin of the large mass hierarchies among the Standard Model fermions. Within this context, a good solution for the gauge hierarchy problem corresponds to low masses for the Kaluza-Klein (KK) excitations of the gauge bosons. Some scenarios have been proposed in order to render these low masses (down to a few TeV) consistent with precision electroweak measurements. Here, we give specific and complete realizations of this RS version with small KK masses, down to 1 TeV, which are consistent with the entire structure of the fermions in flavour space: (1) all the last experimental data on quark/lepton masses and mixing angles (including massive neutrinos of Dirac type) are reproduced, (2) flavour changing neutral current constraints are satisfied and (3) the effective suppression scales of non-renormalizable interactions (in the physical basis) are within the bounds set by low energy flavour phenomenology. Our result, on the possibility of having KK gauge boson modes as light as a few TeV, constitutes one of the first theoretical motivations for experimental searches of direct signatures at the LHC collider, of this interesting version of the RS model which accommodates fermion masses.Comment: 27 pages, Latex file. References and comments adde

    Optimizing flushing parameters in intracoronary optical coherence tomography: an in vivo swine study

    Get PDF
    Intracoronary optical frequency domain imaging (OFDI), requires the displacement of blood for clear visualization of the artery wall. Radiographic contrast agents are highly effective at displacing blood however, may increase the risk of contrast-induced nephropathy. Flushing media viscosity, flow rate, and flush duration influence the efficiency of blood displacement necessary for obtaining diagnostic quality OFDI images. The aim of this work was to determine the optimal flushing parameters necessary to reliably perform intracoronary OFDI while reducing the volume of administered radiographic contrast, and assess the influence of flushing media choice on vessel wall measurements. 144 OFDI pullbacks were acquired together with synchronized EKG and intracoronary pressure wire recordings in three swine. OFDI images were graded on diagnostic quality and quantitative comparisons of flushing efficiency and intracoronary cross-sectional area with and without precise refractive index calibration were performed. Flushing media with higher viscosities resulted in rapid and efficient blood displacement. Media with lower viscosities resulted in increased blood-media transition zones, reducing the pullback length of diagnostic quality images obtained. Flushing efficiency was found to increase with increases in flow rate and duration. Calculations of lumen area using different flushing media were significantly different, varying up to 23 % (p < 0.0001). This error was eliminated with careful refractive index calibration. Flushing media viscosity, flow rate, and flush duration influence the efficiency of blood displacement necessary for obtaining diagnostic quality OFDI images. For patients with sensitivity to contrast, to reduce the risk of contrast induced nephrotoxicity we recommend that intracoronary OFDI be conducted with flushing solutions containing little or no radiographic contrast. In addition, our findings show that careful refractive index compensation should be performed, taking into account the specific contrast agent used, in order to obtain accurate intravascular OFDI measurements.Merck & Co., Inc.National Institutes of Health (U.S.) (Grant Numbers R00CA134920, R01HL076398, R01HL093717
    • 

    corecore