315 research outputs found

    On the origin of the Norwegian lemming.

    Get PDF
    The Pleistocene glacial cycles resulted in significant changes in species distributions, and it has been discussed whether this caused increased rates of population divergence and speciation. One species that is likely to have evolved during the Pleistocene is the Norwegian lemming (Lemmus lemmus). However, the origin of this species, both in terms of when and from what ancestral taxon it evolved, has been difficult to ascertain. Here, we use ancient DNA recovered from lemming remains from a series of Late Pleistocene and Holocene sites to explore the species' evolutionary history. The results revealed considerable genetic differentiation between glacial and contemporary samples. Moreover, the analyses provided strong support for a divergence time prior to the Last Glacial Maximum (LGM), therefore likely ruling out a postglacial colonization of Scandinavia. Consequently, it appears that the Norwegian lemming evolved from a small population that survived the LGM in an ice-free Scandinavian refugium

    The METCRAX II Field Experiment: A Study of Downslope Windstorm-Type Flows in Arizona\u2019s Meteor Crater

    Get PDF
    The second Meteor Crater Experiment (METCRAX II) was conducted in October 2013 at Arizona\u2019s Meteor Crater. The experiment was designed to investigate nighttime downslope windstorm 12type flows that form regularly above the inner southwest sidewall of the 1.2-km diameter crater as a southwesterly mesoscale katabatic flow cascades over the crater rim. The objective of METCRAX II is to determine the causes of these strong, intermittent, and turbulent inflows that bring warm-air intrusions into the southwest part of the crater. This article provides an overview of the scientific goals of the experiment; summarizes the measurements, the crater topography, and the synoptic meteorology of the study period; and presents initial analysis results

    Fur glowing under ultraviolet: in situ analysis of porphyrin accumulation in the skin appendages of mammals

    Get PDF
    Examples of photoluminescence (PL) are being reported with increasing frequency in a wide range of organisms from diverse ecosystems. However, the chemical basis of this PL remains poorly defined, and our understanding of its potential ecological function is still superficial. Among mammals, recent analyses have identified free-base porphyrins as the compounds responsible for the reddish ultraviolet-induced photoluminescence (UV-PL) observed in the pelage of springhares and hedgehogs. However, the localization of the pigments within the hair largely remains to be determined. Here, we use photoluminescence multispectral imaging emission and excitation spectroscopy to detect, map, and characterize porphyrinic compounds in skin appendages in situ. We also document new cases of mammalian UV-PL caused by free-base porphyrins in distantly related species. Spatial distribution of the UV-PL is strongly suggestive of an endogenous origin of the porphyrinic compounds. We argue that reddish UV-PL is predominantly observed in crepuscular and nocturnal mammals because porphyrins are photodegradable. Consequently, this phenomenon may not have a specific function in intra- or interspecific communication but rather represents a byproduct of potentially widespread physiological processes.publishedVersio

    No self-similar aggregates with sedimentation

    Full text link
    Two-dimensional cluster-cluster aggregation is studied when clusters move both diffusively and sediment with a size dependent velocity. Sedimentation breaks the rotational symmetry and the ensuing clusters are not self-similar fractals: the mean cluster width perpendicular to the field direction grows faster than the height. The mean width exhibits power-law scaling with respect to the cluster size, ~ s^{l_x}, l_x = 0.61 +- 0.01, but the mean height does not. The clusters tend to become elongated in the sedimentation direction and the ratio of the single particle sedimentation velocity to single particle diffusivity controls the degree of orientation. These results are obtained using a simulation method, which becomes the more efficient the larger the moving clusters are.Comment: 10 pages, 10 figure

    Highly Pathogenic Avian Influenza Virus Infection of Mallards with Homo- and Heterosubtypic Immunity Induced by Low Pathogenic Avian Influenza Viruses

    Get PDF
    The potential role of wild birds as carriers of highly pathogenic avian influenza virus (HPAIV) subtype H5N1 is still a matter of debate. Consecutive or simultaneous infections with different subtypes of influenza viruses of low pathogenicity (LPAIV) are very common in wild duck populations. To better understand the epidemiology and pathogenesis of HPAIV H5N1 infections in natural ecosystems, we investigated the influence of prior infection of mallards with homo- (H5N2) and heterosubtypic (H4N6) LPAIV on exposure to HPAIV H5N1. In mallards with homosubtypic immunity induced by LPAIV infection, clinical disease was absent and shedding of HPAIV from respiratory and intestinal tracts was grossly reduced compared to the heterosubtypic and control groups (mean GEC/100 µl at 3 dpi: 3.0×102 vs. 2.3×104 vs. 8.7×104; p<0.05). Heterosubtypic immunity induced by an H4N6 infection mediated a similar but less pronounced effect. We conclude that the epidemiology of HPAIV H5N1 in mallards and probably other aquatic wild bird species is massively influenced by interfering immunity induced by prior homo- and heterosubtypic LPAIV infections

    A peridynamic based machine learning model for one-dimensional and two-dimensional structures

    Get PDF
    With the rapid growth of available data and computing resources, using data-driven models is a potential approach in many scientific disciplines and engineering. However, for complex physical phenomena that have limited data, the data-driven models are lacking robustness and fail to provide good predictions. Theory-guided data science is the recent technology that can take advantage of both physics-driven and data-driven models. This study presents a novel peridynamics based machine learning model for one and two-dimensional structures. The linear relationships between the displacement of a material point and displacements of its family members and applied forces are obtained for the machine learning model by using linear regression. The numerical procedure for coupling the peridynamic model and the machine learning model is also provided. The numerical procedure for coupling the peridynamic model and the machine learning model is also provided. The accuracy of the coupled model is verified by considering various examples of a one-dimensional bar and two-dimensional plate. To further demonstrate the capabilities of the coupled model, damage prediction for a plate with a pre-existing crack, a two-dimensional representation of a three-point bending test, and a plate subjected to dynamic load are simulated

    Highly Pathogenic H5N1 Influenza Viruses Carry Virulence Determinants beyond the Polybasic Hemagglutinin Cleavage Site

    Get PDF
    Highly pathogenic avian influenza viruses (HPAIV) originate from avirulent precursors but differ from all other influenza viruses by the presence of a polybasic cleavage site in their hemagglutinins (HA) of subtype H5 or H7. In this study, we investigated the ability of a low-pathogenic avian H5N1 strain to transform into an HPAIV. Using reverse genetics, we replaced the monobasic HA cleavage site of the low-pathogenic strain A/Teal/Germany/Wv632/2005 (H5N1) (TG05) by a polybasic motif from an HPAIV (TG05poly). To elucidate the virulence potential of all viral genes of HPAIV, we generated two reassortants carrying the HA from the HPAIV A/Swan/Germany/R65/06 (H5N1) (R65) plus the remaining genes from TG05 (TG05-HAR65) or in reversed composition the mutated TG05 HA plus the R65 genes (R65-HATG05poly). In vitro, TG05poly and both reassortants were able to replicate without the addition of trypsin, which is characteristic for HPAIV. Moreover, in contrast to avirulent TG05, the variants TG05poly, TG05-HAR65, and R65-HATG05poly are pathogenic in chicken to an increasing degree. Whereas the HA cleavage site mutant TG05poly led to temporary non-lethal disease in all animals, the reassortant TG05-HAR65 caused death in 3 of 10 animals. Furthermore, the reassortant R65-HATG05poly displayed the highest lethality as 8 of 10 chickens died, resembling “natural” HPAIV strains. Taken together, acquisition of a polybasic HA cleavage site is only one necessary step for evolution of low-pathogenic H5N1 strains into HPAIV. However, these low-pathogenic strains may already have cryptic virulence potential. Moreover, besides the polybasic cleavage site, the additional virulence determinants of H5N1 HPAIV are located within the HA itself and in other viral proteins

    Highly Pathogenic Avian Influenza Virus H5N1 Infection in a Long-Distance Migrant Shorebird under Migratory and Non-Migratory States

    Get PDF
    Corticosterone regulates physiological changes preparing wild birds for migration. It also modulates the immune system and may lead to increased susceptibility to infection, with implications for the spread of pathogens, including highly pathogenic avian influenza virus (HPAIV) H5N1. The red knot (Calidris canutus islandica) displays migratory changes in captivity and was used as a model to assess the effect of high plasma concentration of corticosterone on HPAIV H5N1 infection. We inoculated knots during pre-migration (N = 6), fueling (N = 5), migration (N = 9) and post-migration periods (N = 6). Knots from all groups shed similar viral titers for up to 5 days post-inoculation (dpi), peaking at 1 to 3 dpi. Lesions of acute encephalitis, associated with virus replication in neurons, were seen in 1 to 2 knots per group, leading to neurological disease and death at 5 to 11 dpi. Therefore, the risk of HPAIV H5N1 infection in wild birds and of potential transmission between wild birds and poultry may be similar at different times of the year, irrespective of wild birds' migratory status. However, in knots inoculated during the migration period, viral shedding levels positively correlated with pre-inoculation plasma concentration of corticosterone. Of these, knots that did not become productively infected had lower plasma concentration of corticosterone. Conversely, elevated plasma concentration of corticosterone did not result in an increased probability to develop clinical disease. These results suggest that birds with elevated plasma concentration of corticosterone at the time of migration (ready to migrate) may be more susceptible to acquisition of infection and shed higher viral titers—before the onset of clinical disease—than birds with low concentration of corticosterone (not ready for take-off). Yet, they may not be more prone to the development of clinical disease. Therefore, assuming no effect of sub-clinical infection on the likelihood of migratory take-off, this may favor the spread of HPAIV H5N1 by migratory birds over long distances
    corecore