2 research outputs found

    Case Report: Optimization of Topographic Change Detection With UAV Structure-From-Motion Photogrammetry Through Survey Co-Alignment

    Get PDF
    High-quality digital surface models (DSMs) generated from structure-from-motion (SfM) based on imagery captured from unmanned aerial vehicles (UAVs), are increasingly used for topographic change detection. Classically, DSMs were generated for each survey individually and then compared to quantify topographic change, but recently it was shown that co-aligning the images of multiple surveys may enhance the accuracy of topographic change detection. Here, we use nine surveys over the Illgraben debris-flow torrent in the Swiss Alps to compare the accuracy of three approaches for UAV-SfM topographic change detection: 1) the classical approach where each survey is processed individually using ground control points (GCPs), 2) co-alignment of all surveys without GCPs, and 3) co-alignment of all surveys with GCPs. We demonstrate that compared to the classical approach co-alignment with GCPs leads to a minor and marginally significant increase in absolute accuracy. Moreover, compared to the classical approach co-alignment enhances the relative accuracy of topographic change detection by a factor 4 with GCPs and a factor 3 without GCPs, leading to xy and z offset

    Case Report: Optimization of Topographic Change Detection With UAV Structure-From-Motion Photogrammetry Through Survey Co-Alignment

    No full text
    High-quality digital surface models (DSMs) generated from structure-from-motion (SfM) based on imagery captured from unmanned aerial vehicles (UAVs), are increasingly used for topographic change detection. Classically, DSMs were generated for each survey individually and then compared to quantify topographic change, but recently it was shown that co-aligning the images of multiple surveys may enhance the accuracy of topographic change detection. Here, we use nine surveys over the Illgraben debris-flow torrent in the Swiss Alps to compare the accuracy of three approaches for UAV-SfM topographic change detection: 1) the classical approach where each survey is processed individually using ground control points (GCPs), 2) co-alignment of all surveys without GCPs, and 3) co-alignment of all surveys with GCPs. We demonstrate that compared to the classical approach co-alignment with GCPs leads to a minor and marginally significant increase in absolute accuracy. Moreover, compared to the classical approach co-alignment enhances the relative accuracy of topographic change detection by a factor 4 with GCPs and a factor 3 without GCPs, leading to xy and z offset
    corecore