21 research outputs found

    Cardioprotective and proangiogenic activities of small extracellular vesicles released by amniotic fluid stem cells

    Get PDF
    Protection against myocardial ischaemia/reperfusion injury and regeneration of the damaged myocardium are long-sought goals. The use of small extracellular vesicles (sEVs) released by mesenchymal stem cells (MSCs) was shown to be of benefit in the myocardial infarction setting. However, MSCs are frequently harvested from aged or diseased patients and suboptimal sEV isolation methods are used. A subtype of young, foetal MSCs, namely spindle-shaped amniotic fluid stem cells (SS-AFSCs), is known to possess better expansion and functional capacity than its adult counterparts. Here, sEVs released by SS-AFSCs were isolated using size-exclusion chromatography (SEC) – an isolation technique that yields vesicles of superior purity – and their cardioprotective and proangiogenic activities were studied. Firstly, using rat blood plasma, it was demonstrated that SEC isolates higher sEV yields with significantly compromised purity, mostly due to the presence of lipoproteins. To overcome this, a serum-free environment was used for sEVs isolation from SS-AFSC-conditioned medium. Comprehensive characterisation experiments showed that the harvested SS-AFSC sEVs are of high purity. Functionally, SS-AFSC sEVs protected the rat myocardium from ischaemia/reperfusion injury in vivo, but not isolated cardiomyocytes in vitro, indicative of indirect cardioprotective effects. Additionally, SS-AFSC sEVs promoted migration of endothelial cells in vitro and recapitulated the promigratory effects of the SS-AFSC-conditioned medium. Using pharmacological inhibition, it was shown that PI3K pathway, a known player in cell migration, mediates the sEV effects, while a series of potential candidates in the sEV cargo were excluded. Finally, cellular sEV uptake was studied by use of lipophilic dye-labelling experiments. Surprisingly, this commonly used approach was found to be unsuitable for sEV tracking due to non-specific dye retention by non-sEV contaminants. Overall, SEC-isolated SS-AFSC sEVs possess cardioprotective potential manifested only in vivo, and promigratory activity which requires PI3K signalling. These data indicate that SS-AFSC sEVs have multifactorial beneficial effects in a myocardial infarction setting

    Cross-Linking Mass Spectrometry Uncovers Interactions Between High-Density Lipoproteins and the SARS-CoV-2 Spike Glycoprotein

    Get PDF
    High-density lipoprotein (HDL) levels are reduced in patients with coronavirus disease 2019 (COVID-19), and the extent of this reduction is associated with poor clinical outcomes. While lipoproteins are known to play a key role during the life cycle of the hepatitis C virus, their influence on coronavirus (CoV) infections is poorly understood. In this study, we utilize cross-linking mass spectrometry (XL-MS) to determine circulating protein interactors of the severe acute respiratory syndrome (SARS)-CoV-2 spike glycoprotein. XL-MS of plasma isolated from patients with COVID-19 uncovered HDL protein interaction networks, dominated by acute-phase serum amyloid proteins, whereby serum amyloid A2 was shown to bind to apolipoprotein (Apo) D. XL-MS on isolated HDL confirmed ApoD to interact with SARS-CoV-2 spike but not SARS-CoV-1 spike. Other direct interactions of SARS-CoV-2 spike upon HDL included ApoA1 and ApoC3. The interaction between ApoD and spike was further validated in cells using immunoprecipitation-MS, which uncovered a novel interaction between both ApoD and spike with membrane-associated progesterone receptor component 1. Mechanistically, XL-MS coupled with data-driven structural modeling determined that ApoD may interact within the receptor-binding domain of the spike. However, ApoD overexpression in multiple cell-based assays had no effect upon viral replication or infectivity. Thus, SARS-CoV-2 spike can bind to apolipoproteins on HDL, but these interactions do not appear to alter infectivity.</p

    Metabolic recovery after weight loss surgery is reflected in serum microRNAs.

    Get PDF
    Funder: Ministerio de Educación, Cultura y Deporte - SpainFunder: Fondation Leducq; FundRef: http://dx.doi.org/10.13039/501100001674Funder: Marie Skłodowska-Curie Innovative Training Network TRAIN-HEARTFunder: National Institute of Health ResearchINTRODUCTION: Bariatric surgery offers the most effective treatment for obesity, ameliorating or even reverting associated metabolic disorders, such as type 2 diabetes. We sought to determine the effects of bariatric surgery on circulating microRNAs (miRNAs) that have been implicated in the metabolic cross talk between the liver and adipose tissue. RESEARCH DESIGN AND METHODS: We measured 30 miRNAs in 155 morbidly obese patients and 47 controls and defined associations between miRNAs and metabolic parameters. Patients were followed up for 12 months after bariatric surgery. Key findings were replicated in a separate cohort of bariatric surgery patients with up to 18 months of follow-up. RESULTS: Higher circulating levels of liver-related miRNAs, such as miR-122, miR-885-5 p or miR-192 were observed in morbidly obese patients. The levels of these miRNAs were positively correlated with body mass index, percentage fat mass, blood glucose levels and liver transaminases. Elevated levels of circulating liver-derived miRNAs were reversed to levels of non-obese controls within 3 months after bariatric surgery. In contrast, putative adipose tissue-derived miRNAs remained unchanged (miR-99b) or increased (miR-221, miR-222) after bariatric surgery, suggesting a minor contribution of white adipose tissue to circulating miRNA levels. Circulating levels of liver-derived miRNAs normalized along with the endocrine and metabolic recovery of bariatric surgery, independent of the fat percentage reduction. CONCLUSIONS: Since liver miRNAs play a crucial role in the regulation of hepatic biochemical processes, future studies are warranted to assess whether they may serve as determinants or mediators of metabolic risk in morbidly obese patients

    Influence of androgen receptor in vascular cells on reperfusion following hindlimb ischaemia

    Get PDF
    AIMS:Studies in global androgen receptor knockout (G-ARKO) and orchidectomised mice suggest that androgen accelerates reperfusion of the ischaemic hindlimb by stimulating angiogenesis. This investigation used novel, vascular cell-specific ARKO mice to address the hypothesis that the impaired hindlimb reperfusion in G-ARKO mice was due to loss of AR from cells in the vascular wall. METHODS AND RESULTS:Mice with selective deletion of AR (ARKO) from vascular smooth muscle cells (SM-ARKO), endothelial cells (VE-ARKO), or both (SM/VE-ARKO) were compared with wild type (WT) controls. Hindlimb ischaemia was induced in these mice by ligation and removal of the femoral artery. Post-operative reperfusion was reduced in SM-ARKO and SM/VE-ARKO mice. Immunohistochemistry indicated that this was accompanied by a reduced density of smooth muscle actin-positive vessels but no change in the density of isolectin B4-positive vessels in the gastrocnemius muscle. Deletion of AR from the endothelium (VE-ARKO) did not alter post-operative reperfusion or vessel density. In an ex vivo (aortic ring culture) model of angiogenesis, AR was not detected in vascular outgrowths and angiogenesis was not altered by vascular ARKO or by exposure to dihydrotestosterone (DHT 10(-10)-10(-7)M; 6 days). CONCLUSION:These results suggest that loss of AR from vascular smooth muscle, but not from the endothelium, contributes to impaired reperfusion in the ischaemic hindlimb of G-ARKO. Impaired reperfusion was associated with reduced collateral formation rather than reduced angiogenesis

    Comparison of small extracellular vesicles isolated from plasma by ultracentrifugation or size-exclusion chromatography: yield, purity and functional potential

    No full text
    Interest in small extracellular vesicles (sEVs) as functional carriers of proteins and nucleic acids is growing continuously. There are large numbers of sEVs in the blood, but lack of standardised methods for sEV isolation greatly limits our ability to study them. In this report, we use rat plasma to systematically compare two commonly used techniques for isolation of sEVs: ultracentrifugation (UC-sEVs) and size-exclusion chromatography (SEC-sEVs). SEC-sEVs had higher particle number, protein content, particle/protein ratios and sEV marker signal than UC-sEVs. However, SEC-sEVs also contained greater amounts of APOB+ lipoproteins and large quantities of non-sEV protein. sEV marker signal correlated very well with both particle number and protein content in UC-sEVs but not in all of the SEC-sEV fractions. Functionally, both UC-sEVs and SEC-sEVs isolates contained a variety of proangiogenic factors (with endothelin-1 being the most abundant) and stimulated migration of endothelial cells. However, there was no evident correlation between the promigratory potential and the quantity of sEVs added, indicating that non-vesicular co-isolates may contribute to the promigratory effects. Overall, our findings suggest that UC provides plasma sEVs of lower yields, but markedly higher purity compared to SEC. Furthermore, we show that the functional activity of sEVs can depend on the isolation method used and does not solely reflect the sEV quantity. These findings are of importance when working with sEVs isolated from plasma- or serum-containing conditioned medium

    Confounding factors in vesicle uptake studies using fluorescent lipophilic membrane dyes

    No full text
    Small extracellular vesicles (sEVs) such as exosomes are nanocarriers of proteins, RNAs and DNAs. Isolation of pure sEV populations remains challenging, with reports of protein and lipoprotein contaminants in the isolates. Cellular uptake – a cornerstone for understanding exosome and sEV function – is frequently examined using lipophilic dyes such as PKH67 or CellMask to label the vesicles. In this study, we investigated whether contaminants can confound the outcomes from sEV and exosomes uptake experiments. sEVs were isolated from blood plasma of fasted or non-fasted rats as well as from serum-supplemented or serum-free conditioned cell culture medium using size-exclusion chromatography (SEC). Eluent fractions were characterized using nanoparticle tracking, protein and triglyceride assays and immunoassays. SEC fractions were labelled with different lipophilic dyes and cellular uptake was quantified using endothelial cells or primary cardiomyocytes. We report co-isolation of sEVs with apolipoprotein B-containing lipoproteins. Cellular dye transfer did not correspond to sEV content of the SEC fractions, but was severely affected by lipoprotein and protein content. Overnight fasting of rats decreased lipoprotein content and also decreased dye transfer, while late, sEV-poor/protein-rich fractions demonstrated even greater dye transfer. The potential for dye transfer to occur in the complete absence of sEVs was clearly shown by experiments using staining of sEV-depleted serum or pure protein sample. In conclusion, proteins and lipoproteins can make a substantial contribution to transfer of lipophilic dyes to recipient cells. Considering the likelihood of contamination of sEV and exosome isolates, lipophilic dye staining experiments should be carefully controlled, and conclusions interpreted with caution

    SARS-CoV-2 RNAemia and proteomic trajectories inform prognostication in COVID-19 patients admitted to intensive care

    Get PDF
    Prognostic characteristics inform risk stratification in intensive care unit (ICU) patients with coronavirus disease 2019 (COVID-19). We obtained blood samples (n = 474) from hospitalized COVID-19 patients (n = 123), non-COVID-19 ICU sepsis patients (n = 25) and healthy controls (n = 30). Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA was detected in plasma or serum (RNAemia) of COVID-19 ICU patients when neutralizing antibody response was low. RNAemia is associated with higher 28-day ICU mortality (hazard ratio [HR], 1.84 [95% CI, 1.22-2.77] adjusted for age and sex). RNAemia is comparable in performance to the best protein predictors. Mannose binding lectin 2 and pentraxin-3 (PTX3), two activators of the complement pathway of the innate immune system, are positively associated with mortality. Machine learning identified 'Age, RNAemia' and 'Age, PTX3' as the best binary signatures associated with 28-day ICU mortality. In longitudinal comparisons, COVID-19 ICU patients have a distinct proteomic trajectory associated with mortality, with recovery of many liver-derived proteins indicating survival. Finally, proteins of the complement system and galectin-3-binding protein (LGALS3BP) are identified as interaction partners of SARS-CoV-2 spike glycoprotein. LGALS3BP overexpression inhibits spike-pseudoparticle uptake and spike-induced cell-cell fusion in vitro

    Increased production of functional small extracellular vesicles in senescent endothelial cells

    Get PDF
    Small extracellular vesicles (EVs) are novel players in vascular biology. However, a thorough understanding of their production and function remains elusive. Endothelial senescence is a key feature of vascular ageing and thus, is an attractive therapeutic target for the treatment of vascular disease. In this study, we sought to characterize the EV production of senescent endothelial cells. To achieve this, Human Umbilical Vascular Endothelial Cells (HUVECs) were replicated until they reached senescence, as determined by measurement of Senescence-Associated beta-Galactosidase activity via microscopy and flow cytometry. Expression of the endosomal marker Rab7 and the EV marker CD63 was determined by immunofluorescence. Small EVs were isolated by ultracentrifugation and characterized using electron microscopy, nanoparticle tracking analysis and immunoassays to assess morphology, size, concentration and expression of exosome markers CD9 and CD81. Migration of HUVECs in response to EVs was studied using a transwell assay. The results showed that senescent endothelial cells express higher levels of Rab7 and CD63. Moreover, senescent endothelial cells produced higher levels of CD9- and CD81-positive EVs. Additionally, small EVs from both young and senescent endothelial cells promoted HUVEC migration. Overall, senescent endothelial cells produce an increased number of functional small EVs, which may have a role in vascular physiology and disease.National Institute for Health Research (NIHR): BRC233/CM/SD/101320 British Heart Foundation: PG/18/44/33790, FS/15/70/32044 Comision Nacional de Investigacion Cientifica y Tecnologica (CONICYT), CONICYT FONDECYT: 11181000 Comision Nacional de Investigacion Cientifica y Tecnologica (CONICYT, Chile): FONDAP: 15130011 Instituto de Salud Carlos III: FI16/00241, MV18/0003
    corecore